
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Smart Home Example

Summer Term 2018

1 A smart home has many features that are controlled automatically:
Heating, Lighting, Shutters, …

We want to develop a very modular software that helps us to control our smart home and which only
contains those parts that are actually required.

A First Sketch (I/II)
abstract class Location {
 private List<Shutter> shutters; // FEATURE: DARKENING
 private List<Light> lights; // FEATURE: LIGHTING

 public Location(List<Shutter> shutters, List<Light> lights) {
 this.shutters = shutters;
 this.lights = lights;
 }

 public List<Shutter> shutters() { return shutters; }
 public List<Light> lights() { return lights; }
}

abstract class CompositeLocation<L extends Location> extends Location {
 private List<L> locations;

 public CompositeLocation(List<L> locations) {
 super(shutters(locations), lights(locations));
 this.locations = locations;
 }
 private static List<Light> lights(List<? extends Location> locs) {…}
 private static List<Shutter> shutters(List<? extends Location> locs) {…}

 public List<L> locations() { return locations; }
}

 2

2 Location is the base class that declares the functionality that some location can offer (optionally!). Hence,
it takes multiple responsibilities.

A First Sketch (II/II)
class Room extends Location {
 public Room(List<Shutter> shutters, List<Light> lights) {
 super(shutters, lights);
 }
}

class Floor extends CompositeLocation<Room> {
 public Floor(List<Room> locations) { super(locations); }
}

class House extends CompositeLocation<Floor> {
 public House(List<Floor> locations) { super(locations); }
}

class Main {
 public static void main(String[] args) {
 House house = new House(null);
 List<Floor> floors = house.locations();
 }
}

 3
☔

3 Assessment
In the prototypical solution all (optional) features are declared by the main interface (Location).
Ask yourself: Which design principle is violated?
We should split the code, if we want to be able to make functional "packages", such as heating control,
lighting control, or security, optional. Consider, e.g., the case that the provider may want to sell several
configurations of a smart home, each with a specific selection of features.

How to model interacting/depending features? E.g., a sensor that closes the shutters in the evening and
turns on the lights.

A Second Sketch (I/II)

interface Location { }

interface CompositeLocation<L extends Location> extends Location {
 abstract List<L> locations();
}

class Room implements Location { }

class Floor implements CompositeLocation<Room> {
 private List<Room> rooms;

 public List<Room> locations() { return rooms; }
}

class House implements CompositeLocation<Floor> {
 private List<Floor> floors;

 public List<Floor> locations() { return floors; }
}

 4

We try to achieve feature decomposition.

4 So far we are just modeling the basic structure of a building (`House`).

A Second Sketch (II/II)

interface LocationWithLights extends Location {
 List<Light> lights();
}

class RoomWithLights extends Room implements LocationWithLights {
 private List<Light> lights;
 public List<Light> lights() { return lights; }
}

abstract class CompositeLocationWithLights<LL extends LocationWithLights>
 implements CompositeLocation<LL> {

 public List<Light> lights() {
 List<Light> lights = new ArrayList<Light>();
 for (LocationWithLights child : locations()) {
 lights.addAll(child.lights());
 }
 return lights;
 }
}

 5

We try to achieve feature decomposition.

☔

5 Given the shown code/the proposed solution, we can identify several issues:

• class FloorWithLights extends CompositeLocationWithLights and Floor  
The class should inherit from (CompositeLocationWithLights and Floor) ? (we don't want code
duplication!)

• class HouseWithLights extends ...  
The class should inherit from ? (we don't want code duplication!)

• Imagine that we have another additional feature; e.g., shutters and we want to avoid code duplication!

Ideally, we would like to have several versions of class definitions - one per responsibility - which can be
“mixed and matched” as needed.

… In Java, we have to use a Pattern to solve the Design Problem (there is no language support!)

A Third Sketch  
(Let’s start with the translation of the Java Code)
trait Shutter
trait Light

abstract class Location {
 def shutters: List[Shutter]
 def lights: List[Light]
}

abstract class CompositeLocation[L <: Location] extends Location {
 def lights: List[Light] = locations.flatMap(_.lights)
 def shutters: List[Shutter] = locations.flatMap(_.shutters)
 def locations: List[L]
}
class Room(
 val lights: List[Light],
 val shutters: List[Shutter]) extends Location
class Floor(val locations: List[Room]) extends CompositeLocation[Room]
class House(val locations: List[Floor]) extends CompositeLocation[Floor]

object Main extends App {
 val house = new House(new Floor(new Room(Nil, Nil) :: Nil) :: Nil)
 val floors: List[Floor] = new House(Nil).locations
}

 6 A na
ive

 tra
ns

lat
ion

 doe
sn

’t s
olv

e t
he

 prob
lem

!

6 What we want to achieve is that:
• Features that are developed independently (such as heating, cooling or lighting) can be (freely)

combined
• The solution is type safe even in the presence of new optional features (which requires appropriate

support by the available programming language)
• We do not (have to) duplicate code (Copy & Paste programming).

Additionally, the underlying programming language should also support separate compilation to enable us
to deploy our solution independently.

Note: A house with lights is (conceptually) also a different type of house than a house with lights and
shutters and air conditioning.

A Third Sketch (Base)
trait Building {

 trait TLocation {}
 type Location <: TLocation

 trait TRoom extends TLocation
 type Room <: TRoom with Location
 def createRoom(): Room

 trait CompositeLocation[L <: Location] extends TLocation {
 def locations: List[L]
 }

 trait TFloor extends CompositeLocation[Room]
 type Floor <: TFloor with Location
 def createFloor(locations: List[Room]): Floor

 trait THouse extends CompositeLocation[Floor]
 type House <: THouse with Location
 def createHouse(locations: List[Floor]): House

 def buildHouse(specification: String): House = {
 // imagine to parse the specification...
 createHouse(List(createFloor(List(createRoom()))))
 }
}

 7

Enable the refinement of TLocation!

We need a Factory method to create
(yet unknown) rooms.

7 Note, that the buildHouse method constructs a House object though the concrete type is not yet known.

A Third Sketch (Adding Lights)
trait Lights extends Building {

 trait TLocation extends super.TLocation {
 def lights(): List[Light]
 def turnLightsOn = lights.foreach(_.turnOn())
 def turnLightsOff = lights.foreach(_.turnOff())
 }
 type Location <: TLocation

 trait TRoom extends super.TRoom with TLocation
 type Room <: TRoom with Location

 trait CompositeLocation[L <: Location]
 extends super.CompositeLocation[L] with TLocation {
 def lights: List[Light] = locations.flatMap(_.lights())
 }

 trait TFloor extends super.TFloor with CompositeLocation[Room]
 type Floor <: TFloor with Location

 trait THouse extends super.THouse with CompositeLocation[Floor]
 type House <: THouse with Location
}

 8 The
 im

ple
men

tat
ion

 of
 th

e t
rai

t

Sh
ut
te
rs

 is
co

mpa
rab

le!

8

A Third Sketch (Lights And Shutters)
trait LightsAndShutters extends Lights with Shutters {

 trait TLocation
 extends super[Lights].TLocation
 with super[Shutters].TLocation
 type Location <: TLocation

 trait TRoom extends super[Lights].TRoom with super[Shutters].TRoom with TLocation
 type Room <: TRoom with Location

 trait CompositeLocation[L <: Location]
 extends super[Lights].CompositeLocation[L]
 with super[Shutters].CompositeLocation[L]
 with TLocation

 trait TFloor extends super[Lights].TFloor with super[Shutters].TFloor
 with CompositeLocation[Room]
 type Floor <: TFloor with Location

 trait THouse extends super[Lights].THouse with super[Shutters].THouse
 with CompositeLocation[Floor]
 type House <: THouse with Location
}

 9

9 Though we got the features that we wanted, the code feels like “Assembler Code” at the type level. Scala
lacks support for deep, nested mixin composition (i.e., it does not support Virtual Classes/Dependent
Classes).

A Third Sketch (Usage)
object BuildingsWithLightsAndShutters extends LightsAndShutters with App {

 type Location = TLocation
 type Room = TRoom
 type Floor = TFloor
 type House = THouse

 def createRoom(): Room = new Room {
 var lights = List.empty[Light];
 var shutters = List.empty[Shutter]
 }
 def createFloor(rooms: List[Room]): Floor =
 new Floor { val locations = rooms }
 def createHouse(floors: List[Floor]): House =
 new House { val locations = floors }

 val h = buildHouse("three floors with 6 rooms each")
 h.lights
 h.shutters
 h.locations
 h.turnLightsOn
}

 10

10 Basically, in the first 4 lines we create type aliases for location, room, floor and house which "fixes" our
abstract type definitions. After that, we implement the factory methods as required. For the method
parameter types and return types, we still use the names of the type definitions.

Example Usage
val r1 = BuildingsWithLightsAndShutters.createRoom()
val rO = BuildingsWithLights.createRoom()
BuildingsWithLightsAndShutters.createFloor(List(r1, rO))

• For further information search for the Cake Pattern in Scala.
• More advanced language concepts such as Virtual Classes and Dependent Classes would make the

solution even easier (much less boilerplate code!)

