Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik
Technische Universitat Darmstadt

Template Method Pattern

The Template-Method Pattern in a Nutshell

Intent:

« Separate high-level policies from
detailed low-level mechanisms.

- Separate invariant from variant parts.

Solution Idea:
Use abstract classes to: opA()

* Define interfaces to detailed
mechanisms and variant parts.

* Implement high-level policies and opA()
invariant parts to these interfaces. opB()

AbstractClass
{abstract}

<method~

templateMethod(®- - |- = - - - | 0pA(;

opB) opB();

ConcreteClass

« Control sub-class extensions.

* Avoid code duplication.

The Template-Method Pattern plays a key role in the design of object-oriented frameworks.

(Separate high-level policies from detailed low-level mechanisms. => This is related to the
recommendation not to override methods from superclasses.)

Example Application of Template Method

Functional requirements:
* Need a family of sorting algorithms ...(bubble sort, quick sort, etc.)
« for different kinds of data (int, double, etc.)

* Clients that use sorting algorithms should be reusable with a variety of
specific algorithms.

Non-functional requirements on the design:

« Need to separate the high-level ,sorting“ policies from low-level
mechanisms.

* Low-level mechanisms are responsible for:
* deciding when an element is out of order,

* swapping out-of-order elements.
3

Separating the Policy of Sorting

public abstract class BubbleSorter {

protected int length - 0; BubbleSorter
abstract]

Policy
[_IntBubbleSorter] [DoubleBubbleSorter]
protected void sort() {
(length 1 H
(int nextToLast = length - 2; nextTolLast 0; nextToLast--)
(int index = 0; index nextTolLast; index++)
(outOfOrder(index)) swap(index);
}

Mechanism

protected abstract void swap(int index);
protected abstract boolean outOfOrder(int index);

Implement the sorting policy in a template method, sort. Hide mechanisms needed for implementing the
sorting policy behind abstract methods (outOfOrder and swap), which are called by the template method.

5 The advantages and deficiencies of the Template-Method Pattern are basically those of inheritance:

Filling the Template for Specific Algorithms Template method forces mechanisms to extend a specific policy.
et * |Implementation of low-level mechanisms depends on the template.
private int[] array - null; VARV ¢ Cannot re-use low-level mechanisms functionality.
pUbLLC void sortCint[] therray) ¢ [eubbleSorter] [DoubleBubbleSorter | swap and outOfOrder implemented in IntBubbleSorter may be useful in other contexts as well, e.g., for

array = theArray;
length = array.length; .
/*’super”*/sort(); QUICk SOI’t

3

protected void swap(int index) {
int temp - array[index];
array[index] = array[index + 1];
array[index + 1] = temp;

protected boolean outOfOrder(int index) {
return (array[index] - array[index + 11);

What are the advantages and deficiencies of the Template-Method Pattern?
5

Task: Identify the Template Method Pattern in Log4J 6 In case of an exam, it would be possible that we provide you with this example and would ask about the
used patterns.

interface Appender a

N . ppender
Implement this interface for your own strategies for outputting «interface»
log statements. [...]

Ask yourself which method is the “Template Method”?

;eiName()
public void doAppend(LoggingEvent event) :ﬁgz(’)’e”d“'°gg‘"ga’e""
Log in Appender specific way. A
abstract class AppenderSkeleton implements L
Appender AppenderSkeleton

«abstract»

Abstract superclass of the other appenders. This class
provides the code for common functionality, such as support [getName(

for threshold filtering and support for general filters. [...] dFApgeﬂd(Loggngvem)
Closel
abstract void append(LoggingEvent event) append(LoggingEvent)

Subclasses should implement this method to perform
actual logging.

[JDBC,

void doAppend(LoggingEvent event)

This method performs threshold checks and invokes filters
before delegating actual logging to the
append(LoggingEvent) method

Functional Counterpart of Template

One can look at the Template-Method Pattern as a style for
emulating higher-order functions available in programming
languages that support functional-style programming.

Alternative design for Log4J in Scala?

class AppenderSkeleton(
private val append : (LoggingEvent) Unit

doAppend(loggingEvent : LoggingEvent) {
// filtering, threshold checks,..
append(loggingEvent)
}
}

Whether this is a feasible design or not requires a detailed analysis of the context; i.e., the

AppenderSkeleton class. [n thi he meth

in differen

states which suggests that the standard implementation approach is best suited (also in Scala).

Higher-order Functions:

* First-order functions abstract over variations in data. ("Supported by basically all languages.”)

* Higher-order function: A function parameterized by other functions.
Higher-order functions abstract over variations in sub-computations.

* First-class functions are values that can be passed as parameters and returned as results.

}

Scala (2.11.x) HashTable

e

[..]

There are mainly two parameters that affect the performance of a hashtable: the initial size
and the load factor. The size refers to the number of buckets in the hashtable, and the load

factor is a measure of how full the hashtable is allowed to get before its size is
automatically doubled. Both parameters may be changed by overriding the corresponding
values in class HashTable.

7
trait HashTable[A, Entry >: Null <: HashEntry[A, Entry]] extends HashTable.HashUtils[A] {
/** The actual hash table.*/

@transient protected var table: Array[HashEntry[A, Entry]] = new Array(initialCapacity)

/** The initial size of the hash table.*/
protected def initialSize: Int = 16

private def initialCapacity = capacity(initialSize)

[.]

Again, ask yourself where is the template method?

Ask yourself, why it is better/safer to define a method initialSize then a variable?

Here, the usage of the Template Method Pattern is a technical artifact, because Scala (up to 2.12) does

not support trait parameters! In general, using inheritance in such a way is ill-advised.

