
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Template Method Pattern

Summer Term 2018

1

The Template-Method Pattern in a Nutshell
Intent:

• Separate high-level policies from
detailed low-level mechanisms.

• Separate invariant from variant parts.

Solution Idea:  
Use abstract classes to:

• Define interfaces to detailed
mechanisms and variant parts.

• Implement high-level policies and
invariant parts to these interfaces.

• Control sub-class extensions.

• Avoid code duplication.
 2

opA()
opB()

ConcreteClass

templateMethod()
opA()
opB()

AbstractClass
{abstract}

«method»
{

...
opA();
...
opB();

}

2 The Template-Method Pattern plays a key role in the design of object-oriented frameworks.

(Separate high-level policies from detailed low-level mechanisms. => This is related to the
recommendation not to override methods from superclasses.)

Example Application of Template Method
Functional requirements:

• Need a family of sorting algorithms …(bubble sort, quick sort, etc.)

• for different kinds of data (int, double, etc.)

• Clients that use sorting algorithms should be reusable with a variety of
specific algorithms.

Non-functional requirements on the design:

• Need to separate the high-level „sorting“ policies from low-level
mechanisms.

• Low-level mechanisms are responsible for:

• deciding when an element is out of order,

• swapping out-of-order elements.
 3

3

Separating the Policy of Sorting
public abstract class BubbleSorter {  
 protected int length = 0;

Policy

 protected void sort() {  
 if (length <= 1) return;  
 for (int nextToLast = length - 2; nextToLast >= 0; nextToLast--)  
 for (int index = 0; index <= nextToLast; index++)  
 if (outOfOrder(index)) swap(index);  
 }

Mechanism

 protected abstract void swap(int index);  
 protected abstract boolean outOfOrder(int index);  
 
}

 4

IntBubbleSorter

BubbleSorter
{abstract}

DoubleBubbleSorter

4 Implement the sorting policy in a template method, sort. Hide mechanisms needed for implementing the
sorting policy behind abstract methods (outOfOrder and swap), which are called by the template method.

Filling the Template for Specific Algorithms
public class IntBubbleSorter  
 extends BubbleSorter {  
  
 private int[] array = null;  
 
 public void sort(int[] theArray) {  
 array = theArray;  
 length = array.length;  
 /*”super”*/sort();  
 }  
 protected void swap(int index) {  
 int temp = array[index];  
 array[index] = array[index + 1];  
 array[index + 1] = temp;  
 }  
 protected boolean outOfOrder(int index) {  
 return (array[index] > array[index + 1]);  
 }  
}

 5

IntBubbleSorter

BubbleSorter
{abstract}

DoubleBubbleSorter

What are the advantages and deficiencies of the Template-Method Pattern?

5 The advantages and deficiencies of the Template-Method Pattern are basically those of inheritance:
Template method forces mechanisms to extend a specific policy.
• Implementation of low-level mechanisms depends on the template.
• Cannot re-use low-level mechanisms functionality.  

swap and outOfOrder implemented in IntBubbleSorter may be useful in other contexts as well, e.g., for
quick sort.

Task: Identify the Template Method Pattern in Log4J

interface Appender  
Implement this interface for your own strategies for outputting
log statements. […]

public void doAppend(LoggingEvent event)  
Log in Appender specific way.

abstract class AppenderSkeleton implements
Appender  
Abstract superclass of the other appenders. This class
provides the code for common functionality, such as support
for threshold filtering and support for general filters. […]

abstract void append(LoggingEvent event)  
Subclasses should implement this method to perform
actual logging.

void doAppend(LoggingEvent event)  
This method performs threshold checks and invokes filters
before delegating actual logging to the
append(LoggingEvent) method.

 6

getName()
doAppend(LoggingEvent)
close()
...

...

Appender
«interface»

JDBCAppenderTelnetAppender

...

getName()
doAppend(LoggingEvent)
close()
...
append(LoggingEvent)

...

AppenderSkeleton
«abstract»

6 In case of an exam, it would be possible that we provide you with this example and would ask about the
used patterns.

Ask yourself which method is the “Template Method”?

Functional Counterpart of Template

Alternative design for Log4J in Scala?
class AppenderSkeleton( 
 private val append : (LoggingEvent) => Unit // Function1[LoggingEvent,Unit]  
) {  
 def doAppend(loggingEvent : LoggingEvent) {  
 // filtering, threshold checks,…  
 append(loggingEvent)  
 }  
}

 7

One can look at the Template-Method Pattern as a style for
emulating higher-order functions available in programming
languages that support functional-style programming.

7 Whether this is a feasible design or not requires a detailed analysis of the context; i.e., the
AppenderSkeleton class. In this case, the method close indicates that an Appender may be in different
states which suggests that the standard implementation approach is best suited (also in Scala).
__

Higher-order Functions:
• First-order functions abstract over variations in data. (“Supported by basically all languages.”)
• Higher-order function: A function parameterized by other functions. 

Higher-order functions abstract over variations in sub-computations.
• First-class functions are values that can be passed as parameters and returned as results.
__

Scala (2.11.x) HashTable
/** 
[…] 
There are mainly two parameters that affect the performance of a hashtable: the initial size
and the load factor. The size refers to the number of buckets in the hashtable, and the load
factor is a measure of how full the hashtable is allowed to get before its size is
automatically doubled. Both parameters may be changed by overriding the corresponding
values in class HashTable. 
*/ 
trait HashTable[A, Entry >: Null <: HashEntry[A, Entry]] extends HashTable.HashUtils[A] { 
 [...]  
 /** The actual hash table.*/ 
 @transient protected var table: Array[HashEntry[A, Entry]] = new Array(initialCapacity) 
 
 /** The initial size of the hash table.*/ 
 protected def initialSize: Int = 16 
  
 private def initialCapacity = capacity(initialSize)

 […] 
 
}

 8

8 Again, ask yourself where is the template method?

Ask yourself, why it is better/safer to define a method initialSize then a variable?

Here, the usage of the Template Method Pattern is a technical artifact, because Scala (up to 2.12) does
not support trait parameters! In general, using inheritance in such a way is ill-advised.

