
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Proxy Pattern

Summer Term 2018

1

Proxy Pattern

 2

Provide a surrogate or placeholder
for another object to control access
to it.

2 From the client’s point of view, the proxy behaves just like the actual object.

request()

SubjectClient

request()

RealSubject

request()

ProxyrealSubject

«method»
{ ...

realSubject.request()
...

}

Proxy Pattern Structure

 3

3 The client is often neither responsible for creating the proxy nor is aware of the fact that it interacts with a
proxy!

Proxy Pattern - Typical Variations

• Virtual Proxies: Placeholders

• Smart References: Additional functionality

• Remote Proxies: Make distribution transparent

• Protection Proxies: Rights management

 4

4 Virtual Proxies: Placeholders – Create expensive objects only on demand. Objects associated with a large
amount of data in a file or database may only be loaded into memory if the operation on the proxy demands that
they are loaded.
Implementation: Some subset of operations may be performed without bothering to load the entire
object, e.g., return the extent of an image.
Smart References: Additional functionality – Replace bare pointer and provide additional actions when
accessed.
Examples: (I) Locking / unlocking references to objects used from multiple threads. (II) Reference
counting, e.g., for resource management (garbage collection, observer activities). (III) Transaction handling
in the context of enterprise applications using application servers (LSP Violation?)
Remote Proxies: Make distribution transparent – Provide a local interface for communicating with objects in a
different address space. Operations on the proxies are delegated to a remote object and return values are passed
through the proxy back to the client.
Issues: From the client’s view, the proxy responds just like if the object were local, even though it is
actually sending requests over a network; network failures may, however, be impossible to hide (LSP
Violation?)
Protection Proxies: Rights management – Verify that the caller has permission to perform the operation.
Issues: (I) Different clients may have different access levels for operating on an object. (II) Read-only
objects may be protected from unauthorized modifications this way. (III) Exceptions are thrown in case of
a violation (LSP Violation?).

paragraph

paragraph

 paragraph

Image

Document

draw()
bounds()
store()
load()

DocElement

draw()
bounds()
store()
load()

Image

draw()
bounds()
store()
load()

Paragraph

Document

Example  
(Virtual Proxy)

• Imagine, you are
developing a browser
rendering engine.

• In this case you do not
want to handle all elements
in a straightforward manner.

• E.g., you immediately want
to start laying out the page
even if not all images are
already completely loaded.
However, this should be
completely transparent to
the layout engine.

How can I hide the fact that loading the image takes time?

5 Goal:
I don't want to complicate the editor's implementation. The optimization shouldn't impact the rendering
and formatting code.

16Kb 2Mb

imageProxy image

:Document :ImageProxy :Image
image

in memory on disc

fileName:String
on

 de
man

d

Lazy Loading - Solution

• We use another object, an image proxy, that acts as a stand-in for
the real image.

6 The Image Proxy…
• implements the same interface as the real object.  

Client code is unaware that it doesn't use the real object.
• instantiates the real object when required, e.g., when the editor asks the proxy to display itself by

invoking its `draw()` operation. (Keeps a reference to the image after creating it to forward subsequent
requests to the image.)

DocElement

Graphic

Document

Image draw()
bounds()
...

image : image
ImageProxy

«method»
{

if (image ==null) {
loadImage();

}
image.draw();

}

Lazy Loading - Solution

 7

7

Summary

• without making clients aware of that fact,  
(I.e., the client is not creating the proxy object and usually has no direct dependency on the proxy’s type.)

• while achieving a benefit of some kind:
• lazy creation,

• resource and/or rights management, or

• distribution transparency.

 8

The Proxy Pattern describes how to replace an
object with a surrogate object.

8 In practice, proxies often cause (benign?) LSP violations.

Java's Dynamic Proxy Class
• A dynamic proxy class is a class that implements a list of

interfaces specified at runtime such that a method
invocation through one of the interfaces on an instance of
the class will be encoded and dispatched to another
object through a uniform interface.

• A proxy interface is such an interface that is implemented
by a proxy class.

• A proxy instance is an instance of a proxy class.

 9

Subtitle Text

9 Proxy classes, as well as instances of them, are created using the static methods of the class
java.lang.reflect.Proxy.

Java's Dynamic Proxy Class - Example
public interface Foo { Object bar(Object obj); }
public class FooImpl implements Foo { Object bar(Object obj) { … } }

public class DebugProxy implements java.lang.reflect.InvocationHandler {
 private Object obj;

 public static Object newInstance(Object obj) {
 return Proxy.newProxyInstance(
 obj.getClass().getClassLoader(),obj.getClass().getInterfaces(),
 new DebugProxy(obj));
 }

 private DebugProxy(Object obj) { this.obj = obj; }

 public Object invoke(Object proxy, Method m, Object[] args) throws Throwable {
 System.out.println("before method " + m.getName());
 return m.invoke(obj, args);
 }
}

Foo foo = (Foo) DebugProxy.newInstance(new FooImpl());
foo.bar(null);

 10

Setup
Usage

10

Review Questions

• What is the "major" difference between the Proxy and the
Decorator Pattern?  
(Think about the structure and the behavior.)

 11

m()

m()

L

m()

Rl «method»
... l.m() ...

m()

m()

L

m()

R

«method»
... l.m() ...

m()

m()

L

m()

R

m()
n()

R’

m()
addedState

R’’

«method»
... l.m() ...

The Structure of two “different” patterns?

11 The structure is basically the same (depending on the concrete variant)… however, in case of the proxy
the client is generally NOT aware of the proxy and no additional client accessible methods/fields are
added, while in case of the decorator pattern the client has the responsibility to create the decorator and
the additional functionality is explicitly required by the client; in case of decorators, we generally don’t
have LSP violations, because the additional functionality is provided by additional(new) methods.

Review Questions

• Is the Proxy Design Pattern subject to the "fragile base
class" problem?  
(And if so, where and in which way?)

• In Java, we only have forwarding semantics, but could it
be desirable to have delegation semantics, when
implementing the proxy pattern?

 12

12 Do ask yourself: What is a seemingly benign change to a class/an interface. Can such a seemingly benign
change affect the proxy pattern?

Delegation semantics would be desirable for, e.g., a protection proxy, where the different methods have
different protection levels. Without delegation semantics, we need to know the self-call structure of the
RealSubject to make sure that we check for sufficient access rights.

