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Making Code Look 
Like Design
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“Designing” with Pseudo-Assembler
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What does the following program do?

i = 1
TEST: if i < 4

then goto BODY
else goto END

BODY: print i
i = i + 1
goto TEST

END:



“Designing” with Pseudo-Assembler
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What does the following program do?

i = 1
LOOP: print i

i = i + 1
if i < 4 goto LOOP

END:



Style can only be 
recommended, not 

enforced!
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Designing with Structured Programming Languages
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What does the following program do?

i = 1
while ( i < 4 ) {

print(i)
i = i + 1

}

Style
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Better languages, More challenging tasks…
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A simple image browser with structured programming



Code for Image Browser Structured into Procedures
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Try to identify which method calls which method!

main () {
draw_label(“Art Browser”)
   m = radio_menu(
      {“Whale”, “Eagle”, 
       “Dogfish”})
   q = button_menu({“Quit”})
   while ( !check_buttons(q) ) {
      n = check_buttons(m)
      draw_image(n)
   }
}

set_x (x) {
   current_x = x
}

draw_circle (x, y, r) {
   %%primitive_oval(x, y, 1, r)
}

set_y (y) {
   current_y = y
}

radio_menu(labels) {
   i = 0
   while (i < labels.size) {
      radio_button(i)
      draw_label(labels[i])
      set_y(get_y()
         + RADIO_BUTTON_H)
      i++
   }
}

radio_button (n) {
   draw_circle(get_x(),
      get_y(), 3)
}

get_x () {
   return current_x
}

get_y () {
   return current_y
}

draw_image (img) {
   w = img.width
   h = img.height
   do (r = 0; r < h; r++)
      do (c = 0; c < w; c++)
         WINDOW[r][c] = img[r][c]
}

button_menu(labels) {
   i = 0
   while (i < labels.size) {
      draw_label(labels[i])
      set_y(get_y()
         + BUTTON_H)
      i++
   }
}

draw_label (string) {
   w = calculate_width(string)
   print(string, WINDOW_PORT)
   set_x(get_x() + w)
}



Structured Programming 
with Style

gui_radio_button(n)

gui_button_menu(labels)

gui_radio_menu(labels)

graphic_draw_image (img)

graphic_draw_circle (x, y, r)

graphic_draw_label (string)

state_set_y (y)

state_get_y ()

state_set_x (x)

state_get_x ()

main()



Designing with Modular Programming Languages
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module gui {
    exports:
        radio_menu(labels)
        button_menu(labels)
        check_buttons(menu)
}



Module-based Abstraction
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gui:
radio_menu(labels)
 button_menu(labels)
 check_buttons(menu)

image_browser

graphics



Abstraction mechanisms 
enable us to code and 
design simultaneously!
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"Write what you mean."



Let’s “develop” application families with sophisticated GUIs with 
uniform look and feel with modular programming…
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Designing with Object-Oriented Programming Languages

• classes 

• inheritance 

• subtype polymorphism 

• virtual methods
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Object-oriented programming languages introduce new 
abstraction mechanisms:
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The roots of object-oriented programming languages are in the 
sixties.
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Allan Kay,  
Smalltalk 70 - 80  

Dahl and Nygaard, 
Simula 64, 68 



Programming Languages are not a Panacea
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–Einstein

"The significant problems we face cannot be solved 
at the same level of thinking we were at when we 
created them."
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–Jack Reeves,  To Code is to Design, C++ Report 1992

 […] improvements in programming techniques 
and programming languages in particular are 
overwhelmingly more important than anything else 
in the software business […]  

[…] programmers are interested in design […] 
when more expressive programming languages 
become available, software developers will adopt 
them. 
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Design Challenge

Implementing 
trait Col[X]{map[T](f:(X)=>T){…}}

Try to implement the classical map function, which performs 
a mapping of the values of a collection using a given 
function, only once for all collection classes.  
The function should be defined by the “top-level” class 
(e.g., Collection).  
The type of the collection with the mapped values should 
correspond to runtime type of the source collection. If this is 
not possible, a reasonable other collection should be 
created. (The function should not fail!)
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This is only a first approximation of the mehtod’s signature. 



Implementing Col[X]{map[T](f:(X)=>T){…}}
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Initial Draft

trait Col[X] { def map[T](f : (X) => T) : Col[T] = {…} }
class List[X] extends Col[X] { /*does not override map!*/ …}
class BitSet extends Col[Int] {/*does not override map!*/ …} 

val l = List(1,2,3)
l.map(i => i +1) // should result in List[Int](2,3,4)
val b = BitSet(1,2,3)
b.map(i => i +1) // should result in BitSet[Int](2,3,4)
b.map(i => “I:"+i) // should result in ???("I:1","I:2","I:3")



Designing with Functional, Object-Oriented Programming 
Languages
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class Person(id : Int)

var ids = 0
def nextId() : Int = { val id = ids ; ids+= 1; id }

Array.fill(15){ new Person(nextId()) }

=> Array[Person] = Array(Person(0), …, Person(14))

Result:

Code:

Fill an array with n Person objects where each Person has a unique id.



Designing with Functional, Object-Oriented Programming 
Languages with a Flexible Syntax
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Creating an abstraction to express that we want to repeat something n 
times.

def repeat[T: scala.reflect.ClassTag](times: Int)(f: ⇒ T): Array[T] = {  

  val array = new Array[T](times)
  var i = 0
  while (i < times) { array(i) = f; i += 1 }
  array
}


Now, we can express that we want to create an Array of 15 unique 
person objects using our new control-abstraction.

repeat(15){ new Person(nextId()) }



Designing with Functional, Object-Oriented Programming 
Languages with a Flexible Syntax vs. Explicit Language Features
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val tempFile = File.createTempFile("demo", "tmp");
process(new java.io.FileOutputStream(tempFile)) { fout ⇒ 
  fout.write(42);
}

Using Scala’s language features enables us to define a new control 
structure that resembles Java’s try-with-resources statement.

def process[C <: Closeable, T](closable: C)(r: C ⇒ T): T = {
    try { r(closable) } 
    finally { if (closable != null) closable.close() }
}

File tempFile = File.createTempFile("demo", "tmp");
try (FileOutputStream fout = new FileOutputStream(tempFile)) {
fout.write(42);

}

Java’s native try-with-resources statement



Programming Languages with 
notable Features:
• RUST avoids buffer errors statically (based on ownership)  

Graydon Hoare, 2009 

• Checked C avoids buffer errors statically and dynamically 
(introduces new checked pointer types) 
David TardiF, June 2016 (v 0.5) 

• Perl (3) implements a taint mode to avoid injections 
dynamically  
Larry Wall, 1987 

• Java made first steps to avoid cryptographic issues with the 
“Cryptography Architecture”  

• GO, Erlang,… have advanced support for concurrency
24



We need good style to cope with complexity!
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General Design Principles

• Keep it short and simple 
• Don't repeat yourself (also just called "DRY-Principle") 
• High Cohesion 
• Low Coupling 
• No cyclic dependencies 
• Make it testable 
• Open-closed Design Principle 
• Make it explicit/use Code 
• Keep related things together 
• Keep simple things simple 
• Common-reuse/Common-closure/Reuse-release principles
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The following principles apply at various abstraction levels!



Object-Oriented Design Principles

• Liskov Substitution Principle 

• Responsibility Driven Design 

• …
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Design Constraints

• Conway's Law 
A system's design is constrained by the organization's 
communication structure.
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