
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Programming Languages and Design Principles

Winter Semester 16/17

Making Code Look
Like Design

2

“Designing” with Pseudo-Assembler

3

What does the following program do?

i = 1
TEST: if i < 4

then goto BODY
else goto END

BODY: print i
i = i + 1
goto TEST

END:

“Designing” with Pseudo-Assembler

4

What does the following program do?

i = 1
LOOP: print i

i = i + 1
if i < 4 goto LOOP

END:

Style can only be
recommended, not

enforced!

5

Designing with Structured Programming Languages

6

What does the following program do?

i = 1
while (i < 4) {

print(i)
i = i + 1

}

Style
 gets

 en
for

ce
d!

Better languages, More challenging tasks…

7

A simple image browser with structured programming

Code for Image Browser Structured into Procedures

8

Try to identify which method calls which method!

main () {
draw_label(“Art Browser”)
 m = radio_menu(
 {“Whale”, “Eagle”,
 “Dogfish”})
 q = button_menu({“Quit”})
 while (!check_buttons(q)) {
 n = check_buttons(m)
 draw_image(n)
 }
}

set_x (x) {
 current_x = x
}

draw_circle (x, y, r) {
 %%primitive_oval(x, y, 1, r)
}

set_y (y) {
 current_y = y
}

radio_menu(labels) {
 i = 0
 while (i < labels.size) {
 radio_button(i)
 draw_label(labels[i])
 set_y(get_y()
 + RADIO_BUTTON_H)
 i++
 }
}

radio_button (n) {
 draw_circle(get_x(),
 get_y(), 3)
}

get_x () {
 return current_x
}

get_y () {
 return current_y
}

draw_image (img) {
 w = img.width
 h = img.height
 do (r = 0; r < h; r++)
 do (c = 0; c < w; c++)
 WINDOW[r][c] = img[r][c]
}

button_menu(labels) {
 i = 0
 while (i < labels.size) {
 draw_label(labels[i])
 set_y(get_y()
 + BUTTON_H)
 i++
 }
}

draw_label (string) {
 w = calculate_width(string)
 print(string, WINDOW_PORT)
 set_x(get_x() + w)
}

Structured Programming
with Style

gui_radio_button(n)

gui_button_menu(labels)

gui_radio_menu(labels)

graphic_draw_image (img)

graphic_draw_circle (x, y, r)

graphic_draw_label (string)

state_set_y (y)

state_get_y ()

state_set_x (x)

state_get_x ()

main()

Designing with Modular Programming Languages

10

module gui {
 exports:
 radio_menu(labels)
 button_menu(labels)
 check_buttons(menu)
}

Module-based Abstraction

11

gui:
radio_menu(labels)
 button_menu(labels)
 check_buttons(menu)

image_browser

graphics

Abstraction mechanisms
enable us to code and
design simultaneously!

12

"Write what you mean."

Let’s “develop” application families with sophisticated GUIs with
uniform look and feel with modular programming…

13

Designing with Object-Oriented Programming Languages

• classes

• inheritance

• subtype polymorphism

• virtual methods

14

Object-oriented programming languages introduce new
abstraction mechanisms:

(Still)
 Dom

ina
tin

g

Prog
ram

ming
 Para

digm

The roots of object-oriented programming languages are in the
sixties.

15

Allan Kay,
Smalltalk 70 - 80

Dahl and Nygaard,
Simula 64, 68

Programming Languages are not a Panacea

16

–Einstein

"The significant problems we face cannot be solved
at the same level of thinking we were at when we
created them."

17

–Jack Reeves, To Code is to Design, C++ Report 1992

 […] improvements in programming techniques
and programming languages in particular are
overwhelmingly more important than anything else
in the software business […]

[…] programmers are interested in design […]
when more expressive programming languages
become available, software developers will adopt
them.

18

Design Challenge

Implementing 
trait Col[X]{map[T](f:(X)=>T){…}}

Try to implement the classical map function, which performs
a mapping of the values of a collection using a given
function, only once for all collection classes.
The function should be defined by the “top-level” class
(e.g., Collection).
The type of the collection with the mapped values should
correspond to runtime type of the source collection. If this is
not possible, a reasonable other collection should be
created. (The function should not fail!)

19

This is only a first approximation of the mehtod’s signature.

Implementing Col[X]{map[T](f:(X)=>T){…}}

20

Initial Draft

trait Col[X] { def map[T](f : (X) => T) : Col[T] = {…} }
class List[X] extends Col[X] { /*does not override map!*/ …}
class BitSet extends Col[Int] {/*does not override map!*/ …} 

val l = List(1,2,3)
l.map(i => i +1) // should result in List[Int](2,3,4)
val b = BitSet(1,2,3)
b.map(i => i +1) // should result in BitSet[Int](2,3,4)
b.map(i => “I:"+i) // should result in ???("I:1","I:2","I:3")

Designing with Functional, Object-Oriented Programming
Languages

21

class Person(id : Int)

var ids = 0
def nextId() : Int = { val id = ids ; ids+= 1; id }

Array.fill(15){ new Person(nextId()) }

=> Array[Person] = Array(Person(0), …, Person(14))

Result:

Code:

Fill an array with n Person objects where each Person has a unique id.

Designing with Functional, Object-Oriented Programming
Languages with a Flexible Syntax

22

Creating an abstraction to express that we want to repeat something n
times.

def repeat[T: scala.reflect.ClassTag](times: Int)(f: ⇒ T): Array[T] = {  

 val array = new Array[T](times)
 var i = 0
 while (i < times) { array(i) = f; i += 1 }
 array
}

Now, we can express that we want to create an Array of 15 unique
person objects using our new control-abstraction.

repeat(15){ new Person(nextId()) }

Designing with Functional, Object-Oriented Programming
Languages with a Flexible Syntax vs. Explicit Language Features

23

val tempFile = File.createTempFile("demo", "tmp");
process(new java.io.FileOutputStream(tempFile)) { fout ⇒ 
 fout.write(42);
}

Using Scala’s language features enables us to define a new control
structure that resembles Java’s try-with-resources statement.

def process[C <: Closeable, T](closable: C)(r: C ⇒ T): T = {
 try { r(closable) }
 finally { if (closable != null) closable.close() }
}

File tempFile = File.createTempFile("demo", "tmp");
try (FileOutputStream fout = new FileOutputStream(tempFile)) {
fout.write(42);

}

Java’s native try-with-resources statement

Programming Languages with
notable Features:
• RUST avoids buffer errors statically (based on ownership)  

Graydon Hoare, 2009

• Checked C avoids buffer errors statically and dynamically
(introduces new checked pointer types) 
David TardiF, June 2016 (v 0.5)

• Perl (3) implements a taint mode to avoid injections
dynamically  
Larry Wall, 1987

• Java made first steps to avoid cryptographic issues with the
“Cryptography Architecture”

• GO, Erlang,… have advanced support for concurrency
24

We need good style to cope with complexity!

25

General Design Principles

• Keep it short and simple
• Don't repeat yourself (also just called "DRY-Principle")
• High Cohesion
• Low Coupling
• No cyclic dependencies
• Make it testable
• Open-closed Design Principle
• Make it explicit/use Code
• Keep related things together
• Keep simple things simple
• Common-reuse/Common-closure/Reuse-release principles

26

The following principles apply at various abstraction levels!

Object-Oriented Design Principles

• Liskov Substitution Principle

• Responsibility Driven Design

• …

27

Design Constraints

• Conway's Law 
A system's design is constrained by the organization's
communication structure.

28

