
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Interface Segregation Principle

Winter Semester 16/17

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Interface Segregation Principle

Clients should not be forced to depend on methods that they do
not use.

2

Here, clients are those classes which use a specific interface.

Introduction by Example

• Consider the development of software for an automated
teller machine (ATM):

• Support for the following types of transactions is
required: withdraw, deposit, and transfer.

• Support for different languages and support for
different kinds of UIs is also required

• Each transaction class needs to call methods on the
GUI  
E.g., to ask for the amount to deposit, withdraw,
transfer.

3

Introduction by Example
• Initial design of a software for an automatic teller machine

(ATM):

4

What do you think?

ISP tells us to avoid this. Each transaction class uses a part of the interface, but depends on all others.
Any change affects all transactions.

A Polluted Interface

• It declares methods that
do not belong together.

• It forces classes to depend
on unused methods and
therefore depend on
changes that should not
affect them.

• ISP states that such
interfaces should be split.

5

ATM UI is a polluted interface!

When clients depend on methods
they do not use, they become

subject to changes forced upon
these methods by other clients.

6

The Rationale Behind ISP This causes coupling between all clients!

How does an ISP compliant solution look like?

7

An ISP Compliant Solution

8

Transfer
Transaction

Withdrawal
Transaction

Deposit
Transaction

+ Execute ()

Transaction
{abstract}

+ requestDepositAmount ()
+ requestWithdrawalAmount ()
+ requestTransferAmount ()
+ informInsufficientFunds ()

«interface»
ATM UI

+ requestTransferAmount ()

«interface»
Transfer UI

+ requestWithdrawalAmount ()
+ informInsufficientFunds ()

«interface»
Withdrawal UI

+ requestDepositAmount ()

«interface»
Deposit UI

Here, the client (Deposit|Withdrawal|Transfer)Transaction only depends on a UI related interface related to
its specific task.

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Interface (/ Trait) Segregation Principle  
(In case of Java 8 (/ Scala).)

Clients should not be forced to depend on methods that they do
not use.

9

Try to group possible clients
of a class and have an

interface/trait for each group.

10

General Strategy

Try to group possible clients
of a class and have an

interface/trait for each group.

11

General Strategy

Proliferation of
Interfaces/Traits⚠

Segregating interfaces should not be overdone!

If you overdue the application of the interface segregation principle, you will end up with 2n-1 interfaces
for a class with n methods.

Recall that, in general, a class implementing many interfaces may be a sign of a violation of the single-
responsibility principle.

Do we have an ISP violation?

12

scala.collection.Traversable (excerpt)

If the semantics of one of the defined methods is not suitable for a custom collection that wants to inherit
from Traversable (e.g., because drop(n) should fail if n is too large), it is no longer possible to inherit
from this class (otherwise we would get a Liskov Substitution Principle violation). Splitting up the methods
in two or more traits would improve reusability.

This problem became more prevalent with Java 8 because it is now possible - by means of default
methods defined in interfaces - to inherit concrete methods. (The problem always existed in Scala (by
means of traits).)

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Interface (/ Trait) Segregation Principle  
(In case of Java 8 (/ Scala).)

Clients should not be forced to depend on methods that they do
not use.
Subtypes should not be forced to inherit methods
which have a specific semantics.

13

In this case, it is important to understand that the clients of a class are those that use the class (by
invoking methods on an instance of the respective type) or which inherit from the respective class or trait.

In the previous case (i.e., in the case of the Scala library), the decision was made to avoid throwing
exceptions as long as possible/to handle corner cases gracefully. This line of thinking is not suitable in all
cases and then prevents classes from inheriting from these collection classes.

