Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik
Technische Universitat Darmstadt

Interface Segregation Principle

Interface Segregation Principle

Clients should not be forced to depend on methods that they do

not use.

—Agile Software Development; Robert C. Martin; Prentice Hall, 2003

2

Introduction by Example

e Consider the development of software for an automated
teller machine (ATM):

e Support for the following types of transactions is
required: withdraw, deposit, and transfer.

e Support for different languages and support for
different kinds of Uls is also required

e Fach transaction class needs to call methods on the
GUI

E.g., to ask for the amount to deposit, withdraw,
transter.

Introduction by Example

 |nitial design of a software for an automatic teller machine
(ATM):

vV
Transaction «interface»
{abstract} ATM Ul

+ Execute + requestDepositAmount ()
+ + requestWithdrawalAmount ()

+ requestTransferAmount ()

+ informInsufficientFunds “
I
Deposit Withdrawal Transfer [
. . . I
Transaction Transaction Transaction | | rfeccmmmm e e m =y

‘ Speech Ul | ‘ Braille Ul | ‘ Screen Ul |

What do you think?

A Polluted Interface
ATM Ul is a polluted intertace!

e |t declares methods that
do not belong together.

e |t forces classes to depend

on unused methods and ierace
therefore depend on reqwosrmwaATEn
changes that should not minsaanFunds

affect them.

e |[SP states that such
Interfaces should be spilit.

When clients depend on methods
they do not use, they become
subject to changes forced upon
these methods by other clients.

How does an ISP compliant solution look like?

vV
Transaction «interface»
{abstract} ATM Ul

+ Execute + requestDepositAmount ()
+ + requestWithdrawalAmount ()

+ requestTransferAmount ()

+ informInsufficientFunds “
I
Deposit Withdrawal Transfer [
. - . '
Transaction Transaction Transaction | = rfeccccmmmeea-- e

‘ Speech Ul | ‘ Braille Ul | ‘ Screen Ul |

SR ——

An ISP Compliant Solution

Transaction
{abstract}
+ Execute ()

Deposit Withdrawal Transfer
Transaction Transaction Transaction

: | :

| | |

| | |
r——————————— % e e e e e = - - - - 1
| | |
| | |
Vv Vv Vv

«interface» «interface» «interface»
Deposit Ul Withdrawal Ul Transfer Ul

+ requestDepositAmount ()

+ requestWithdrawalAmount ()
+ informInsufficientFunds ()

+ requestTransferAmount ()

«interface»

ATM Ul

Interface (/" Trait) Segregation Principle

(In case of Java 8 (/ Scala).)

Clients should not be forced to depend on methods that they do

not use.

—Agile Software Development; Robert C. Martin; Prentice Hall, 2003

9

General Strategy

Try to group possible clients
of a class and have an
interface/trait for each group.

General Strategy

Try to group possible clients
of a class and have an
interface/trait for each group.

' Proliferation of
o Interfaces/Traits

S ——

Do we have an ISP violation?

scala.collection.Traversable (excerpt)

def drop(n: Int): Traversable[A]

v

Selects all elements except first n ones.

Note: might return different results for different runs, unless the underlying collection
type is ordered.

n the number of elements to drop from this traversable collection.

returns a traversable collection consisting of all elements of this traversable
collection except the first n ones, or else the empty traversable collection,
if this traversable collection has less than n elements.

Definition Classes TraversableLike — GenTraversableLike

def

dropWhile(p: (A) = Boolean): Traversable[A]

Drops longest prefix of elements that satisfy a predicate.

def

exists(p: (A) = Boolean): Boolean
Tests whether a predicate holds for at least one element of this traversable collection.

Note: may not terminate for infinite-sized collections.

p the predicate used to test elements.

returns false if this traversable collection is empty, otherwise true if the given
predicate p holds for some of the elements of this traversable collection,
otherwise false

Definition Classes TraversableLike — TraversableOnce — GenTraversableOnce

Interface (/" Trait) Segregation Principle

(In case of fava 8 (/ Scala).)

Clients should not be forced to depend on methods that they do
not use.

Subtypes should not be forced to inherit methods
which have a specific semantics.

—Agile Software Development; Robert C. Martin; Prentice Hall, 2003

13

