
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Dependency-Inversion Principle

Winter Semester 16/17

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Dependency-Inversion Principle

High-level modules should not depend on low-level modules.
Both should depend on abstractions.

Abstractions should not depend on details. Details should
depend on abstractions.

2

Introduction by Example

• Behavior of Button:

• The button is capable of
“sensing” whether it has
been activated/
deactivated by the user.

• Once a change is
detected, it turns the
Lamp on, respectively
off.

3

A Small Design Exercise

Button

+TurnOn()
+TurnOff()

Lamp

Issues?

Assessment
• We cannot reuse Button since it depends directly on Lamp. (But there are plenty of other uses for

Button.)
• Button should not depend on the details represented by Lamp.

These are symptoms of the real problem (Violation of the Dependency-Inversion Principle). The high-level
policy (detection of on/off gestures) underlying this (mini) design depends on the low-level details.
The underlying abstraction is the detection of on/off gestures and their delegation to a server object
that can handle them.

If the interface of Lamp is changed, Button has to be at least tested or even adjusted, even though the
policy that Button represents is not changed!
To make the high-level policy independent of details we should be able to define it independent of the
details of Lamp or any other specific device.

A Dependency-Inversion Principle Compliant Solution

4

Button

+activate()
+deactivate()

Switchable
«interface»

Lamp

Now Button only depends on abstractions; it can be reused with various classes that implement
Switchable.

Changes in Lamp will not affect Button.

The dependencies have been inverted: Lamp now has to conform to the interface defined by Button.

Actually: both depend on an abstraction!

The Rationale behind the
Dependency-Inversion Principle

• Good software designs are structured into modules.
• High-level modules contain the important policy

decisions and business models of an application – The
identity of the application.

• Low-level modules contain detailed implementations of
individual mechanisms needed to realize the policy.

5

“Here”, policy means what to do when.

The Rationale behind the
Dependency-Inversion Principle

• Good software designs are structured into modules.

• High-level modules contain the important policy
decisions and business models of an application – The
identity of the application.

• Low-level modules contain detailed implementations of
individual mechanisms needed to realize the policy.

6

High-level Policy

The abstraction that underlies the application;

the truth that does not vary when details are changed; the

system inside the system; the metaphor.

High-level policies and business processes is what we want to reuse. If high-level modules
depend on the low-level modules changes to the lower level details will force high-level modules to be
tested again/to be changed. Additionally, it becomes harder if not practically impossible to use them in
other contexts. It is the high-level modules that should influence the low-level details.

-Grady Booch

„…all well-structured object-oriented architectures have
clearly defined layers, with each layer providing some
coherent set of services through a well-defined and
controlled interface…“  

7

-Grady Booch

„…all well-structured object-oriented architectures have clearly defined
layers, with each layer providing some coherent set of services through a well-
defined and controlled interface…“  

8

Policy
Layer

Mechanism
Layer

Utility
Layer

The higher the module is positioned in a
layered architecture, the more general the
function it implements.

The lower the module, the more detailed
the function it implements.

An Interpretation

This interpretation clearly violates DIP. Higher-level modules depend on lower-level modules.

This is actually a typical structure of a layered architecture realized with structured programming (e.g.,
using "C").

Layers and Dependencies

9

Inverted Layer Dependencies

Mechanism

Utility

Policy

Policy
Layer

Mechanism
Layer

Utility
Layer

«interface»
Mechanism

Service Interface

«interface»
Policy Service

Interface

Clients own the
interface - if at all!

• An upper-layer declares (owns) interfaces for services it needs.
• Lower-layer implements these interfaces.
• Upper-layer uses lower-layer by the interface.  

The upper layer does not depend on the lower-layer.
• Lower-layer depends on the interface declared by the upper-layer.

Usually, we think of utility libraries as owning their own interfaces. (A relict from structured programming
era.) Due to ownership inversion, Policy is unaffected by changes in Mechanism or Utility.

(Such as design also greatly facilitates test-driven development.)

Naïve Heuristic for Ensuring DIP

All relationships in a program should terminate on an
abstract class or an interface.

• No class should hold a reference to a concrete class.

• No class should derive from a concrete class.

• No method should override an implemented method of
any of its base classes.

10

DO NOT DEPEND ON A CONCRETE CLASS.

This heuristic is usually violated at least once in every program:
• Some class will have to create concrete classes.
• Subclass relationships do often terminate at a concrete class.

The heuristic seems naive for concrete stable classes, e.g., String in Java. But, concrete application
classes are generally volatile and you should not depend on them. Their volatility can be isolated by
keeping them behind abstract interfaces owned by clients.

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Dependency-Inversion Principle

High-level modules should not depend on low-level modules.
Both should depend on abstractions.

Abstractions should not depend on details. Details should
depend on abstractions.

11

• Traditional structural programming creates a dependency
structure in which policies depend on details.  
(Policies become vulnerable to changes in the details.)

• Object-orientation enables to invert the dependency:

• Policy and details depend on abstractions.

• Service interfaces are owned by their clients.

• Inversion of dependency is the hallmark of good object-
oriented design.  
(Implies an inversion of interface ownership.)

