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A smart home has many features that are controlled automatically: 
Heating, Lighting, Shutters,  … 

We want to develop a software that helps us to control our smart home.

A Critical View On 
Inheritance
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Inheritance is the main built-in 
variability mechanism of OO 
languages.

Common functionality can be implemented by a base class and each variation can be implemented by a 
separate subclass.  
• In the following, we analyze the strengths and deficiencies of inheritance with respect to supporting 

variability.  
• Many design patterns that we will discuss in the following sections propose solutions to compensate 

for deficiencies of inheritance.

This section serves as a bridge between the block on design 
principles and the blocks about design patterns and advanced 
languages.  



Desired Properties 
(Of Programming Languages)

• Built-in support for OCP 

• Good Modularity 

• Support for structural variations 

• Variations can be represented in type declarations
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A good support for OCP, reduces the need to anticipate variations. Inheritance allows replacing the 
implementation of arbitrary methods of a base class (unless it is explicitly forbidden, e.g., in Java methods 
can be declared as final). 

Of course, support for variability in a class is conditioned by the granularity of its methods and the 
abstractions built-in. 

When we achieve good modularity, the base class can remain free of any variation-specific 
functionality; each variation is implemented in a separate subclass.  

In general, inheritance allows to design the most suitable interface for each variation.
Different variations of a type may need to extend the base interface with variation-specific fields and 
methods. (In addition to varying the implementation of the inherited base interface.) 

The property that variations can be represented in type declarations is necessary for type-safe access of 
variation-specific interfaces.  

Variation of selection functionality of table widgets.

class TableBase extends Widget { 
  TableModel model; 
  String getCellText(int row, int col){ return model.getCellText(row, col); }
  void paintCell(int r, int c){ getCellText(row, col) … } 
}
abstract class TableSel extends TableBase { 
  abstract boolean isSelected(int row, int col); 
  void paintCell(int row, int col) { if (isSelected(row, col)) … }
}
class TableSingleCellSel extends TableSel { 
  int currRow; int currCol; 
  void selectCell(int r, int c){ currRow = r; currCol = c; } 
  boolean isSelected(int r, int c){ return r == currRow && c == currCol; }  
} 
class TableSingleRowSel extends TableSel { 
  int currRow; 
  void selectRow(int row) { currRow = row; } 
  boolean isSelected(int r, int c) { return r == currRow; } 
}  
class TableRowRangeSel extends TableSel { … } 
class TableCellRangeSel extends TableSel { … } 
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Desired Properties By Example

The modularization of these variations by inheritance is illustrated by the given (pseudo-)code:  
• TableBase implements basic functionality of tables as a variation of common functionality for all 

widgets, e.g., display of tabular data models.  
• The abstract class TableSel extends TableBase with functionality that is common for all types of table 

selection, e.g., rendering of selected cells.  
• TableSingleCellSel, TableSingleRowSel, TableRowRangeSel, and TableCellRangeSel implement specific 

types of table selections.  

 
Assessment 
• Built-in support for OCP: The implementation of paintCell in TableSel can be overridden. 
• Good modularity: Each table selection model is encapsulated in a separate class. 
• Support for structural variations: 

• Different operations and variables are declared and implemented by TableSingleCellSel and 
TableSingleRowSel: currRow, currCel, selectCell and currRow, selectRow, respectively. 

• Can design the most suitable interface for each type of table selection.  
• Do not need to design a base interface that fits all future variations. 

• Variations can be represented in type declarations:  We know that a variable declared with type 



Non-Reusable, Hard-to-Compose Extensions

5

An Extract from Java’s Stream Hierarchy

InputStream

File 
InputStream

Piped 
InputStream

ByteArray 
InputStream

Consider an extract from java.io package that consists of classes for reading from a source. Streams 
abstract from concrete data sources and sinks: 
• InputStream is root of stream classes reading from a data source. 
• FileInputStream implements streams that read from a file. 
• PipedInputStream implements streams that read from a PipedOutputStream.  Typically, a thread 

reads from a PipedInputStream data written to the corresponding PipedOutputStream by another 
thread. 

• ByteArrayInputStream implements streams that read from memory.

Non-Reusable, Hard-to-Compose Extensions
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An Extract from Java’s Stream Hierarchy - A Simple Variation

InputStream

File 
InputStream

Piped 
InputStream

ByteArray 
InputStream

ByteArrayData 
InputStream

Need a variation of ByteArrayInputStream capable of reading whole sentences and not just single 
bytes. 
We could implement it as a subclass of ByteArrayInputStream. The blue part in the name of the 
class denotes the delta (DataInputStream) needed to implement this variation. 

Further Variations that are conceivable: 
• Reading whole sentences with other kinds of streams: 

• FileInputStream objects that are able to read whole sentences. 
• PipedInputStream should read whole sentences too. 
• … 

• Writing the given data back (“red” in the following slide) 
• Buffering content (“green” in the following slide), 
• Counting the numbers of lines processed, 
• …	



Non-Reusable, Hard-to-Compose Extensions
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An Extract from Java’s Stream Hierarchy - A Simple Variation

InputStream

File 
InputStream

Piped 
InputStream

ByteArray 
InputStream

PipedData 
InputStream

PipedBuffered 
InputStream

PipedPushback 
InputStream

ByteArrayData 
InputStream

ByteArrayBuffered 
InputStream

ByteArrayPushback 
InputStream

...

...

...

Each kind of variation would have to be re-implemented for all kinds of streams, for all 
meaningful combinations of variations

Assessment 
The design is complex and suffers from a huge amount of code duplication.

Non-Reusable, Hard-to-
Compose Extensions
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Extensions defined in subclasses of 
a base class cannot be reused with 
other base classes.

The Pushback related functionality in FilePushbackInputStream 
cannot be reused.

Result 
• Code duplication: 

A particular type of variation needs to be re-implemented for all siblings of a base type which results in 
code duplication. 
Large number of independent extensions are possible: 

• For every new functionality we want. 
• For every combination of every functionality we want. 

• Maintenance nightmare: exponential growth of number of classes. 



Weak Support for 
Dynamic Variability
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Variations supported by an object 
are fixed at object creation time and 
cannot be (re-)configured 
dynamically.

A buffered stream is a buffered stream is a buffered stream… It is not 
easily possible to turn buffering on/off if it is implemented by means of 
subclassing.

Dynamic Variability Illustrated

• Potential Solution: 
Mapping from runtime values to classes to be 
instantiated can be implemented by conditional 
statements. 

• Issue: 
Such a mapping is error-prone and not extensible.   
When new variants of the class are introduced, the 
mapping from configuration variables to classes to 
instantiate must be changed.
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The configuration of an object’s implementation 
may depend on values from the runtime context. 

…if(x) new Y() else new Z() …

Example 
Table widget options may come from some dynamic configuration panel; depending on the configuration 
options, different compositions of table widget features need to be instantiated.



Dynamic Variability Illustrated

• Potential Solution: 
Using dependency injection. 

• Issue: 
Comprehensibility suffers: 
• Objects are (implicitly) created by the Framework 

• Dependencies are not directly visible/are rather implicit
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The configuration of an object’s implementation 
may depend on values from the runtime context. 

Example 
Dependency injection is commonly used by Enterprise Application Frameworks such as Spring, EJB,… or 
by frameworks such as Google Guice.

Dynamic Variability Illustrated

• Potential Solution: 
Mapping from runtime values to object behavior can be 
implemented by conditional statements in the 
implementation of object’s methods. 

• Issue: 
Such a mapping is error-prone and not extensible.   
When new variants of the behavior are introduced, the 
mapping from dynamic variables to implementations 
must be changed.
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The behavior of an object may vary depending on 
its state or context of use. 

Example 
An account object’s behavior may vary depending on the amount of money available. The behavior of a 
service then may need to vary depending on the client’s capabilities.



The  
Fragile Base Class 

Problem
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Cf. Item 17 of Joshua Bloch's, Effective Java.

An Instrumented HashSet

import java.util.*;
public class InstrumentedHashSet<E> extends HashSet<E> {
  private int addCount = 0;    
  public InstrumentedHashSet() {    } 
  public InstrumentedHashSet(int initCap, float loadFactor) {
    super(initCap, loadFactor);
  }    

  @Override public boolean add(E e) { addCount++; return super.add(e); }
  @Override public boolean addAll(Collection<? extends E> c) {
    addCount += c.size();
    return super.addAll(c);
  }
  public int getAddCount() { return addCount; }

  public static void main(String[] args) {
    InstrumentedHashSet<String> s = new InstrumentedHashSet<String>();
    s.addAll(Arrays.asList("aaa", "bbb", "ccc"));
    System.out.println(s.getAddCount());
  }
}
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The Fragile Base Class Problem Illustrated

Output?

Suppose we want to implement HashSets that know the number of added elements; we implement a 
class InstrumentedHashSet that inherits from HashSet and overrides methods that change the state 
of a HashSet …  

The answer to the question is 6 because the implementation of addAll in HashSet internally calls 
this.add(...).  Hence, added elements are counted twice.



An Instrumented HashSet

import java.util.*;
public class InstrumentedHashSet<E> extends HashSet<E> {
  private int addCount = 0;    
  public InstrumentedHashSet() {    } 
  public InstrumentedHashSet(int initCap, float loadFactor) {
    super(initCap, loadFactor);
  }    

  @Override public boolean add(E e) { addCount++; return super.add(e); } 
  // @Override public boolean addAll(Collection<? extends E> c) {
  //  addCount += c.size();
  //  return super.addAll(c);
  // }
  public int getAddCount() { return addCount; }

  public static void main(String[] args) {
    InstrumentedHashSet<String> s = new InstrumentedHashSet<String>();
    s.addAll(Arrays.asList(“aaa", “bbb", “ccc"));
    System.out.println(s.getAddCount());
  }
}
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The Fragile Base Class Problem Illustrated

Does this really(!) 
solve the problem?

Ask yourself: Is the counting problem solved, by not overriding `addAll`? For the moment, yes. 
But, not principally.  

What if in the future the designers of HashSet decide to re-implement addAll to insert the elements of 
the parameter collection as a block rather than by calling add on each element of the collection? Might be 
necessary for efficiency reasons.

The Fragile Base Class 
Problem in a Nutshell
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Changes in base classes may lead 
to unforeseen problems in 
subclasses. 

Inheritance Breaks Encapsulation

You can modify a base class in a seemingly safe way. But this modification, when inherited by the 
derived classes, might cause them to malfunction. 

You can't tell whether a base class change is safe simply by examining the base class' methods in 
isolation. You must look at (and test) all derived classes as well. 
You must check all code that uses the base class and its derived classes; this code might also be broken 
by the changed behavior. 

A simple change to a key base class can render an entire program inoperable.



Fragility by dependencies on the self-call structure

• The fragility considered so far is caused by dependencies 
on the self-call structure of the base class. 

• Subclasses make assumptions about the calling relationship 
between public and protected methods of the base 
class.  

• These assumptions are implicitly encoded in the overriding 
decisions of the subclass. 

• If these assumptions are wrong or violated by future 
changes of the structure of superclass’ self-calls, the 
subclass’s behavior is broken.
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The Fragile Base Class Problem in a Nutshell

Is it possible to solve the fragile-base class problem by avoiding assumptions about the self-
call structure of the base class in the implementations of the subclasses?

Fragility by addition of new methods

• Fragility by extending a base class with new methods that were not 
there when the class was subclassed.  

• Example 

• Consider a base collection class. 
• To ensure some (e.g., security) property, we want to enforce that 

all elements added to the collection satisfy a certain predicate. 

• We override every method that is relevant for ensuring the 
security property to consistently check the predicate. 

• Yet, the security may be defeated unintentionally if a new 
method is added to the base class which is relevant for the 
(e.g., security) property.
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The Fragile Base Class Problem in a Nutshell

I/II Several holes of this nature had to be fixed when java.util.Hashtable and java.util.Vector 
were retrofitted to participate in the Java Collection Frameworks.



Fragility by addition of new methods

• Fragility by extending a base class with a method that 
was also added to a subclass. I.e., we accidentally 
capture a new method; the new release of the base class 
accidentally includes a method with the same name and 
parameter types. 

• If the return types differ, your code will not compile 
anymore because of conflicting method signatures. 

• If the signature are compatible, your methods may get 
involved in things you never thought about.
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The Fragile Base Class Problem in a Nutshell

I/III

Fragility by addition of new methods

• Fragility by extending a base class with a method that 
was also added to a subclass. I.e., we accidentally 
capture a new method; the new release of the base class 
accidentally includes a method with the same name and 
parameter types. 

• If the return types differ, your code will not compile 
anymore because of conflicting method signatures. 

• If the signature are compatible, your methods may get 
involved in things you never thought about.
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The Fragile Base Class Problem in a Nutshell

II/III



Fragility by addition of new methods

• Fragility by extending a base class with an overloaded 
method; the new release of the base class accidentally 
includes a method which make it impossible for the 
compiler to determine the call target of your call.
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The Fragile Base Class Problem in a Nutshell

III/III

class X { void m(String){…} ; void m(Object o){…}/*added*/ } 

<X>.m(null)  // the call target is not unique (anymore)

Taming Inheritance
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Implementation inheritance 
(extends) is a powerful way to 
achieve code reuse. 

But, if used inappropriately, it leads 
to fragile software.

In the following, we discuss rules of thumb for making "good use" of inheritance.



Dos and Don'ts

• It is always safe to use inheritance within a package.   
The subclass and the superclass implementation are 
under the control of the same programmers. 

• It is also OK to extend classes specifically designed and 
documented for extension. 

• Avoid inheriting from concrete classes not designed and 
documented for inheritance across package boundaries.
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Taming Inheritance

Closed Packages Assumption

-Joshua Bloch, Effective Java

Design and document for inheritance or else prohibit it.
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Classes Must Document Self-Use

• Each public/protected method/constructor must indicate 
self-use: 

• Which overridable methods it invokes. 
• In what sequence. 

• How the results of each invocation affect subsequent 
processing. 

• A class must document any circumstances under which it 
might invoke an overridable method.  (Invocations might 
come from background threads or static initializers.)
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Taming Inheritance

Common Conventions for Documenting Self-Use

• The description of self-invocations to overridable 
methods is given at the end of a method’s documentation 
comment. 

• The description starts with “This implementation …”.    
Indicates that the description tells something about the 
internal working of the method. 
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Taming Inheritance

Overridable method = non-final and either public or protected



Example of Documentation On Self-
Invocation
• Taken from: java.util.AbstractCollection  

public boolean remove(Object o)
 
Removes a single instance of the specified element from this 
collection.  
…  
This implementation removes the element from the collection 
using the iterator's remove method.
Note that this implementation throws an 
UnsupportedOperationException if the iterator returned by 
this collection's iterator() method does not implement the 
remove(…) method.
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The documentation makes explicit that overriding iterator() will affect the behavior of remove and what the 
effect would be.

Documenting Self-Use 
In API Documentation
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Do implementation details have a 
rightful place in a good API 
documentation?

The answer is simple: It depends! 
• Keep in mind: There are two kinds of clients of an extensible class: 

• Ordinary clients create instances of the class and call methods in its interface (black-box use). 
• Clients that extend the class via inheritance. 

• Ordinary clients should not know such details.  
… At least as long as a mechanism for LSP is in place. 

• Subclassing clients need them. That’s their “interface". 

Current documentation techniques and tools lack proper means of separating the two kinds of API 
documentations.



Example of Documentation On Self-
Invocation
• Taken from: java.util.AbstractList  

protected void removeRange(int fromIndex, int toIndex)
 
Removes from a list …

This method is called by the clear operation on this list and 
its sub lists. Overriding this method to take advantage of the 
internals of the list implementation can substantially improve 
the performance of the clear operation on this list and its sub 
lists…  

This implementation gets a list iterator positioned before 
fromIndex and repeatedly calls ListIterator.next and 
ListIterator.remove. Note: If ListIterator.remove requires 
linear time, this implementation requires quadratic time.
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A class must document the supported hooks to its internals. These internals are irrelevant for ordinary 
users of the class. But, they are crucial for enabling subclasses to specialize the functionality in an 
effective way.

Carefully Design and Test Hooks To 
Internals
• Provide as few protected methods and fields as possible. 

• Each of them represents a commitment to an 
implementation detail. 

• Designing a class for inheritance places limitations on the 
class. 

• Do not provide too few hooks.   

• A missing protected method can render a class 
practically unusable for inheritance.
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How to decide about the protected members to expose? 

W.r.t. designing the internal hooks and making decisions about the kind and number of internal hooks, no 
silver bullet exists. You have to think hard, take your best guess, and test. 

Test your class for extensibility before releasing them. By writing test subclasses (At least one subclass 
should be written by someone other than the superclass author).



Constructors Must Not 
Invoke Overridable 

Methods
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Standing Rule 

Constructors Must Not Invoke 
Overridable Methods
class JavaSuper {
  public JavaSuper() { printState(); }

  public void printState() { System.out.println("no state"); }
}

class JavaSub extends JavaSuper {
    private int x = 42; // the result of a tough computation

    public void printState() { System.out.println("x = " + x); }
}

class JavaDemo {
    public static void main(String[] args) {
        JavaSuper s = new JavaSub();
        s.printState();
    }
}
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Result: 
	 x = 0 
	 x = 42

Ask yourself: What is printed on the screen? 

Problem 
An overridable method called by a constructor may get invoked on a non-initialized receiver. 
As a result a failure may occur. 

Reason  
• The superclass constructor runs before the subclass constructor.  
• The overridden method will get invoked before the subclass constructor has been invoked.  
• The overridden method will not behave as expected if it depends on any initialization done by the 

subclass constructor.



Constructors Must Not Invoke 
Overridable Methods
class ScalaSuper {

    printState(); // executed at the end of the initialization

    def printState() : Unit = { println("no state”) }
}

class ScalaSub extends ScalaSuper {
    var y: Int = 42 // What was the question?
    override def printState() : Unit = { println("y = "+y) }
}

object ScalaDemo extends App {
    val s = new ScalaSub
    s.printState() // after initialization
}
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Result: 
	 y = 0 
	 y = 42

Non-Idiomatic Scala

Ask yourself: What is printed on the screen? 

For further details: [Scala Language Specification](http://www.scala-lang.org/docu/files/
ScalaReference.pdf). 

Constructors Must Not Invoke 
Overridable Methods
class Super {

    // executed at the end of the initialization
    printState();

    def printState() : Unit = { println("no state") }
}

class Sub(var y: Int = 42) extends Super {
    override def printState() : Unit = { println("y = "+y) }
}

object Demo extends App {
    val s = new Sub
    s.printState() // after initialization
}
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Result: 
	 y = 42 
	 y = 42

Idiomatic Scala

Ask yourself: What is printed on the screen? 
Here, a standard class parameter is used to define the field value. In case of traits it is possible to use a 
so-called early field definition clause to define the field value before the super type constructor is 
called. 

Recommended reading: How Scala Experience Improved Our Java Development; http://
spot.colorado.edu/~reids/papers/how-scala-experience-improved-our-java-development-reid-2011.pdf 



Initializers Must Not Invoke 
Overridable Methods
trait Super {
    val s: String
    def printState() : Unit = { println(s) }

    printState();
}

class Sub1 extends Super { val s: String = 110.toString }
class Sub2 extends { val s: String = 110.toString } with Super

new Sub1()
new Sub2()
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Result: 
null 
110

Ask yourself: What is printed on the screen? 
In case of traits it is possible to use a so-called early field definition clause (extends { … }) to 
define the field value before the super type constructor is called. 

For further details: Scala Language Specification (5.1.6 Early Definitions); http://www.scala-lang.org/docu/
files/ScalaReference.pdf 

Variations at the Level of 
Multiple Objects
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So far, we considered variations, 
whose scope are individual classes. 
But, no class is an island!

Examples of class groupings: 
• data structures such as trees and graphs, 
• sophisticated frameworks, 
• the entire application. 

Classes in a group may be related in different ways:  
• by references to each other,  
• by signatures of methods and fields,  
• by instantiation,  
• by inheritance,  
• by shared state and dependencies. 



itemAt(int) : MenuItem
itemCount() : int
addItem(MenuItem) : void
addAction(String,Action) : void

 

Menu

MenuItem

label: String
action : Action

displayText() : String
draw(Graphics): void

PopupMenu MenuBar

CascadeMenu
Item

CheckMenu
Item

RadioMenu
Item

* {ordered}

1

* {ordered}

1

Window Menus
Illustrative Example
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For illustration, we will consider variations of menu structures: 
• A menu is a GUI component consisting of a list of menu items corresponding to different application-

specific actions.  
• Menus are usually organized hierarchically: a menu has several menu items. 
• There may be different variants of menus (popup, menu bar). 
• There may be different variants of menu items. 
• A menu item can be associated with a cascade menu which pops up when the item is selected. 

Menu and menu item objects are implemented by multiple classes that are organized in inheritance 
hierarchies to represent variations of the elements of the object structure. 
• A menu represented by class Menu maintains a list of menu items.  
• Subclasses of Menu implement specialized menus. 
• A PopupMenu is a subclass of Menu implementing pop-up menus.  
• MenuBar is a subclass of Menu, implementing a menu bar which is usually attached at the top edge of 

a window and serves as the top level menu object of the window. 
• Simple menu items are implemented by class MenuItem 
• Subclasses of MenuItem implement specialized menu items:  

• class CheckMenuItem for check-box menu items,  

Different Kinds of Menus

abstract class Menu { 
  List<MenuItem> items; 

  MenuItem itemAt(int i) { 
    return items.get(i); 
  } 

  int itemCount() { return items.size(); } 
  void addItem(MenuItem item) { items.add(item); } 
  void addAction(String label, Action action) { 
    items.add(new MenuItem(label, action)); 
  } 
   ... 
} 

class PopupMenu extends Menu { ... } 

class MenuBar extends Menu { ... } 
38

Classes involved in the implementation of menu functionality refer to each other in the declarations and 
implementations of their fields and methods. 



Different Kinds of Menu Items

class MenuItem { 
  String label; 
  Action action; 

  MenuItem(String label, Action action) {
    this.label = label; 
    this.action = action; 
  } 

  String displayText() { return label; } 

  void draw(Graphics g) { … displayText() … }
} 

class CascadeMenuItem extends MenuItem { 
  PopupMenu menu; 

  void addItem(MenuItem item) { menu.addItem(item); } 
  …
} 

class CheckMenuItem extends MenuItem { … }  

class RadioMenuItem extends MenuItem { … }
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Inheritance for Optional Features of 
Menus
• Variations of menu functionality affect multiple objects 

constituting the menu structure. 

• Since these objects are implemented by different 
classes, we need several new subclasses to express 
variations of menu functionality. 

• This technique has several problems, which will be 
illustrated in the following by a particular example 
variation: Adding accelerator keys to menus. 
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Various optional features related to functionality of menus:  
• Support for accelerator keys for a quick selection of a menu item using a specific key stroke,  
• Support for multi-lingual text in menu items, 
• Support for context help.



Menu Items with Accelerator Keys

class MenuItemAccel extends MenuItem { 
  KeyStroke accelKey; 

  boolean processKey(KeyStroke ks) { 
    if (accelKey != null && accelKey.equals(ks)) {  
      performAction(); 
      return true; 
    } 
    return false; 
  } 

  void setAccelerator(KeyStroke ks) { accelKey = ks; }

  void draw(Graphics g) { 
    super.draw(g); 
    displayAccelKey(); 
  }  
  … 
} 
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The extension of menu items with accelerator keys is implemented in class MenuItemAccel, a subclass of 
MenuItem.  

The extension affects both the implementation of existing methods as well as the structure and interface 
of menu items. E.g., the implementation of the draw method needs to be extended to display the 
accelerator key besides the label of the item. 

New attributes and methods are introduced: 
• to store the key associated to the menu item,  
• to change this association,  
• to process an input key, 
• to display the accelerator key.

Menus with Accelerator Keys

abstract class MenuAccel extends Menu {

  boolean processKey(KeyStroke ks) { 
    for (int i = 0; i < itemCount(); i++) { 
      if (((MenuItemAccel) itemAt(i)).processKey(ks)) return true;  
    } 
    return false; 
  }

  void addAction(String label, Action action) { 
    items.add(new MenuItemAccel(label, action));
  } 
  …
} 
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MenuAccel implements the extension of menus with accelerator keys:  
• adds the new method processKey for processing keys 
• overrides method addAction to ensure that the new item added for an action supports accelerator keys 



Non-Explicit Covariant Dependencies
• Covariant dependencies between objects: 

• The varying functionality of an object in a group may need to access the 
corresponding varying functionality of another object of the group. 

• The type declarations in our design do not express covariant dependencies 
between the objects of a group.  

• References between objects are typed by invariant types, which provide a fixed 
interface.  

abstract class MenuAccel extends Menu {

  boolean processKey(KeyStroke ks) { 
    for (int i = 0; i < itemCount(); i++) { 
      if (((MenuItemAccel) itemAt(i)).processKey(ks)) return true;  
    } 
    return false; 
  }
  …
}
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Covariant dependencies are emulated by type-casts.

The method processKey in a menu with accelerator keys needs to call processKey on its items. 
• Items of a menu are accessed by calling the method itemAt.  
• The method itemAt is inherited from class Menu, where it was declared with return type MenuItem.  
• Thus, to access the extended functionality of menu items, we must cast the result of itemAt to 

MenuItemAccel.  

The design cannot guarantee that such a type cast will always be successful, because items of 
MenuAccel are added over the inherited method addItem, which accepts all menu items, both with and 
without the accelerator functionality. 

Potential for LSP violation!

Instantiation-Related Reusability Problems
• Code that instantiates the classes of an object group cannot be reused with 

different variations of the group.  

abstract class Menu { 

  void addAction(String label, Action action) { 
    items.add(new MenuItem( // <= Creates a MenuItem
      label, action
    )); 
  } 
  … 
} 

abstract class MenuAccel extends Menu { 

  void addAction(String label, Action action) { 
    items.add(new MenuItemAccel( // <= Creates a MenuItemAccel
        label, action
    ));
  } 
  …
}
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Instantiation code can be spread all over the application.

• MenuItem is instantiated in Menu.addAction(...).  
• In MenuAccel, we override addAction(...), so that it instantiates MenuItemAccel.  

A menu of an application can be built from different reusable pieces, provided by different menu 
contributors.



Menu Contributor for Operations on Files
• A menu of an application can be built from different reusable 

pieces, provided by different menu contributors. 

interface MenuContributor { 
   void contribute(Menu menu); 
} 

class FileMenuContrib implements MenuContributor { 

  void contribute(Menu menu) { 
    CascadeMenuItem openWith = new CascadeMenuItem(”Open With”);       
    menu.addItem(openWith);
    MenuItem openWithTE = 
     new MenuItem(”Text Editor”, createOpenWithTEAction());        
    openWith.addItem(openWithTE);

    MenuItem readOnly = 
        new CheckMenuItem(”Read Only”, createReadOnlyAction()); 
    menu.addItem(readOnly) 
    …  
   } 
   …  
}
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The code shows the implementation of a menu contributor for operations on files. It implements the 
method contribute, which extends the given menu object with menu items to open files with different text 
editors, to change the read-only flag of the file, and so on. Since the menu items are created by directly 
instantiating the respective classes, this piece of code cannot be reused for menus with support for key 
accelerators or any other extensions of the menu functionality. 

Instantiation-Related Reusability Problem
• In some situations, overriding of instantiation code can 

have a cascade effect.  

• An extension of class C mandates extensions of all 
classes that instantiate C. 

• This in turn mandates extensions of further classes that 
instantiate classes that instantiate C. 
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Can you imagine a workaround to address instantiation-related problems?
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Abstract Factory Pattern
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Factories for Instantiating Objects
interface MenuFactory { 
  MenuItem createMenuItem(String name, Action action); 
  CascadeMenuItem createCascadeMenuItem(String name); 
  … 
} 
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The Abstract Factory design pattern enables abstraction from group variations by late-bound 
instantiation of the classes of the group’s objects.



Factories for Instantiating Objects
class FileMenuContrib implements MenuContributor { 

  void contribute(
      Menu menu, 
      MenuFactory factory // <= we need a reference to the factory
  ) { 
    MenuItem open = factory.createCascadeMenuItem(”Open”);
    menu.addItem(open);
 
    MenuItem openWithTE = factory.createMenuItem(...); 
    open.addItem(openWithTE); 
    … 
    MenuItem readOnly = factory.createCheckMenuItem(...);
    menu.addItem(readOnly) 
    … 
  } 
  … 
} 
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Factories for Instantiating Objects
class BaseMenuFactory implements MenuFactory { 
  MenuItem createMenuItem(String name, Action action) {     
    return new MenuItem(name, action);  
  }
  CascadeMenuItem createCascadeMenuItem(String name) { 
    return new CasadeMenuItem(name); 
  } 
  …
} 

class AccelMenuFactory implements MenuFactory { 

  MenuItemAccel createMenuItem(String name, Action action) { 
    return new MenuItemAccel(name, action); 
  } 

  CascadeMenuItemAccel createCascadeMenuItem(String name) {
    return new CasadeMenuItemAccel(name); 
  } 
  …
} 
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Deficiencies Of The Factory Pattern
• The infrastructure for the design pattern must be implemented and maintained.  

• Increased complexity of design. 

• Correct usage of the pattern cannot be enforced:  
• No guarantee that classes are instantiated exclusively over factory methods,  

• No guarantee that only objects are used together that are instantiated by the 
same factory.  

• Issues with managing the reference to the abstract factory.  
• The factory can be implemented as a Singleton for convenient access to it 

within entire application.   
This solution would allow to use only one specific variant of the composite within 
the same application.  

• A more flexible solution requires explicit passing of the reference to the 
factory from object to object.   
Increased complexity of design.
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Several studies have shown that the comprehensibility of some code/framework  significantly decreases, 
when it is no longer possible to directly instantiate objects.

Combining Composite & Individual Variation

• Feature variations at the level of object composites (e.g., 
accelerator key support). 

• Variations of individual elements of the composite (e.g., 
variations of menus and items).
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Problem: How to combine variations of individual 
classes with those of features of a class composite.



Menu Items with Accelerator Keys
class MenuItemAccel extends MenuItem { 

    KeyStroke accelKey; 
    boolean processKey(KeyStroke ks) { 
      if (accelKey != null && accelKey.equals(ks)) {  
        performAction(); 
        return true; 
      } 
      return false; 
    } 
    void setAccelerator(KeyStroke ks) { accelKey = ks; } 
    void draw(Graphics g) { super.draw(g); displayAccelKey(); }  
    …

} 

class CascadeMenuItemAccel extends ???
class CheckMenuItemAccel extends ???
class RadioMenuItemAccel extends ???
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How to extend subclasses of MenuItem for different variants of items with the 
accelerator key feature? 
We need subclasses of them that also inherit the additional functionality in 
MenuItemAccel.

Menus with Accelerator Keys
abstract class MenuAccel extends Menu { 

  boolean processKey(KeyStroke ks) { 
    for (int i = 0; i < itemCount(); i++) { 
      if (((MenuItemAccel) itemAt(i)).processKey(ks)) return true;  
    } 
    return false; 
  } 

  void addAction(String label, Action action) { 
    items.add(new MenuItemAccel(label, action));
  } 
  …

}

class PopupMenuAccel extends ??? 
class MenuBarAccel extends ???
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How to extend subclasses of Menu with the accelerator key feature?  
We need subclasses of them that also inherit the additional functionality in 
MenuAccel.



In languages with single inheritance, 
such as Java, combining composite 
& individual variations is non-trivial 

and leads to code duplication.
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A

B C

Client

The Problem in a Nutshell

• We need to extend A (and in 
parallel to it also its 
subclasses B and C) with an 
optional feature (should not 
necessarily be visible to 
existing clients). 

• This excludes the option of 
modifying A in-place, which 
would be bad anyway 
because of OCP.



Alternative Designs
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There are two possibilities ( (I) creating a parallel hierarchy or (II) creating additional subclasses of B and C) 
to add an optional feature to A incrementally without affecting clients in a single inheritance setting.  

In both cases, code needs to be duplicated which leads to a maintenance problem.

Combining Composite and Individual Variations

class PopupMenuAccel extends PopupMenu, MenuAccel { } 
class MenuBarAccel extends MenuBar, MenuAccel { }
```

```Java
class CascadeMenuItemAccel extends CascadeMenuItem, MenuItemAccel {    
  boolean processKey(KeyStroke ks) { 
    if (((PopupMenuAccel) menu).processKey(ks) ) return true;  
    return super.processKey(ks); 
  } 
} 

class CheckMenuItemAccel extends CheckMenuItem, MenuItemAccel { ... }
class RadioMenuItemAccel extends RadioMenuItem, MenuItemAccel { ... }
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Using some form of multiple inheritance…

The design with multiple inheritance has its 
problems.

It requires additional class declarations that explicitly combine the extended element class representing 
the composite variation with sub-classes that describe its individual variations.  
• Such a design produces an excessive number of classes. 
• The design is also not stable with respect to extensions with new element types. 
• The developer must not forget to extend the existing variations of the composite with combinations for 

the new element types. 



Summary

• General agreement in the early days of OO:   
Classes are the primary unit of organization. 

• Standard inheritance operates on isolated classes. 
• Variations of a group of classes can be expressed by 

applying inheritance to each class from the group 
separately.  

• Over the years, it turned out that sets of collaborating 
classes are also units of organization. In general, 
extensions will generally affect a set of related classes.
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(Single-) Inheritance does not appropriately support 
OCP with respect to changes that affect a set of 

related classes! 

Almost all features that proved useful for single 
classes are not available for sets of related
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Mainstream OO languages have only insufficient means for organizing collaborating classes: packages, 
name spaces, etc. These structures have serious problems: 
• No means to express variants of a collaboration. 
• No polymorphism. 
• No runtime semantics.



Desired/Required Features

• Incremental programming at the level of sets of related classes. 
In analogy to incremental programming at the level of 
individual classes enabled by inheritance. 
(I.e., we want to be able to model the accelerator key feature 
by the difference to the default menu functionality.) 

• Polymorphism at the level of sets of related classes → Family 
polymorphism. 
In analogy to subtype polymorphism at the level of individual 
classes.  
(I.e., we want to be able to define behavior that is polymorphic 
with respect to the particular object group variation.)
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Family Polymorphism
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itemAt(int) : MenuItem
itemCount() : int
addItem(MenuItem) : void
addAction(String,Action) : void

 

Menu

MenuItem

label: String
action : Action

displayText() : String
draw(Graphics): void

PopupMenu MenuBar

CascadeMenu
Item

CheckMenu
Item

RadioMenu
Item

* {ordered}

1

* {ordered} 1

processKey(KeyStroke) : void

 

Menu
MenuItem

accelKey: KeyStroke

processKey(KeyStroke) : boolean
setAccelerator(KeyStroke) : void  
draw(Graphics): void

PopupMenu MenuBar

processKey(KeyStroke) : Boolean

CascadeMenu
Item

CheckMenu
Item

RadioMenu
Item

* {ordered}
1

* {ordered}

1

We want to avoid: 
• code duplication 
• casts 
• the necessity to re-implement methods (e.g. addAction) 

Ideally would like to have several versions of class definitions - one per responsibility - which can be 
mixed and matched on-demand.



The Design of AWT and Swing
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A small subset of the core of AWT (Component, Container, Frame, Window) and Swing.

Component

Container Button

Window

Franme

java.awt

update() : void

accessibleContext

JComponent

JButton

javax.swing

update() : void 
setLayout() : void
setRootPane() : void

rootPane
accessibleContext

JWindow

update() : void 
setLayout() : void
setRootPane() : void

rootPane
accessibleContext

JFrame

The question may arise whether this is this a real problem (modification of family of related classes) or not. 
As we will see in the following it is a very real problem which even shows up in mature deployed software. 

Case Study: Java AWT and Swing 
Some of the material used in the following originally appeared in the paper: Bergel et al, Controlling the 
Scope of Change in Java, International Conference on Object-Oriented Programming Systems 
Languages and Applications 2005 

AWT is a GUI framework that was included in the first Java release and which directly interfaces the 
underlying operating system. Therefore, only a small number of widgets are supported to make code 
easier to port. 

Swing extends AWT core classes (by subclassing) with functionality such as: "pluggable look and feel" 
and "double buffering". The Swing-specific support for double buffering to provide smooth flicker-free 
animation is implemented, among others, in the methods update(), setLayout(), etc.. Furthermore, Swing 
adds more widgets. 

AWT Code

public class Container extends Component {
  int ncomponents;
  Component components[] = new Component[0];
   
  public Component add (Component comp) {
    addImpl(comp, null, -1);
    return comp;
  }

  protected void addImpl(Component comp, Object o, int ind) {
    …
    component[ncomponents++] = comp;
    …
  }

  public Component getComponent(int index) {
    return component[index];
  }
}
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The code contains no type checks and/or type casts.



Swing Code

public class JComponent extends Container {

  public void paintChildren (Graphics g) {
    …
    for (; i > = 0 ; i--) {
      Component comp = getComponent (i);
      isJComponent = (comp instanceof JComponent); // type check
      …
      ((JComponent)comp).getBounds(); // type cast
      …
    }
  }
}
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The code contains type checks and/or type casts.

About the Development 
of Swing

66

“In the absence of  a large existing base of  clients of  
AWT, Swing might have been designed differently, with 
AWT being refactored and redesigned along the way. 

Such a refactoring, however, was not an option and we can 
witness various anomalies in Swing, such as duplicated 
code, sub-optimal inheritance relationships, and excessive 
use of  run-time type discrimination and downcasts.”



Takeaway

• Inheritance is a powerful mechanism for supporting 
variations and stable designs in presence of change.   
Three desired properties: 

• Built-in support for OCP and reduced need for 
preplanning and abstraction building. 

• Well-modularized implementations of variations. 

• Support for variation of structure/interface in addition to 
variations of behavior. 

• Variations can participate in type declarations.

67

Takeaway

• Inheritance has also deficiencies 

• Variation implementations are not reusable and not easy to 
compose. 

• Code duplication. 

•  Exponential growth of the number of classes; complex designs. 
• Inheritance does not support dynamic variations – configuring the 

behavior and structure of an object at runtime. 

• Fragility of designs due to lack of encapsulation between parents 
and heirs in an inheritance hierarchy. 

• Variations that affect a set of related classes are not well 
supported.
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