
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

A Critical View on Inheritance

Winter Semester 16/17

A Critical View On
Inheritance

2

Inheritance is the main built-in
variability mechanism of OO
languages.

Desired Properties 
(Of Programming Languages)

• Built-in support for OCP

• Good Modularity

• Support for structural variations

• Variations can be represented in type declarations

3

Variation of selection functionality of table widgets.

class TableBase extends Widget {
 TableModel model;
 String getCellText(int row, int col){ return model.getCellText(row, col); }
 void paintCell(int r, int c){ getCellText(row, col) … }
}
abstract class TableSel extends TableBase {
 abstract boolean isSelected(int row, int col);
 void paintCell(int row, int col) { if (isSelected(row, col)) … }
}
class TableSingleCellSel extends TableSel {
 int currRow; int currCol;
 void selectCell(int r, int c){ currRow = r; currCol = c; }
 boolean isSelected(int r, int c){ return r == currRow && c == currCol; }
}
class TableSingleRowSel extends TableSel {
 int currRow;
 void selectRow(int row) { currRow = row; }
 boolean isSelected(int r, int c) { return r == currRow; }
}
class TableRowRangeSel extends TableSel { … }
class TableCellRangeSel extends TableSel { … }

4

Desired Properties By Example

Non-Reusable, Hard-to-Compose Extensions

5

An Extract from Java’s Stream Hierarchy

InputStream

File
InputStream

Piped
InputStream

ByteArray
InputStream

Non-Reusable, Hard-to-Compose Extensions

6

An Extract from Java’s Stream Hierarchy - A Simple Variation

InputStream

File
InputStream

Piped
InputStream

ByteArray
InputStream

ByteArrayData
InputStream

Non-Reusable, Hard-to-Compose Extensions

7

An Extract from Java’s Stream Hierarchy - A Simple Variation

InputStream

File
InputStream

Piped
InputStream

ByteArray
InputStream

PipedData
InputStream

PipedBuffered
InputStream

PipedPushback
InputStream

ByteArrayData
InputStream

ByteArrayBuffered
InputStream

ByteArrayPushback
InputStream

...

...

...

Each kind of variation would have to be re-implemented for all kinds of streams, for all
meaningful combinations of variations

Non-Reusable, Hard-to-
Compose Extensions

8

Extensions defined in subclasses of
a base class cannot be reused with
other base classes.

The Pushback related functionality in FilePushbackInputStream
cannot be reused.

Weak Support for
Dynamic Variability

9

Variations supported by an object
are fixed at object creation time and
cannot be (re-)configured
dynamically.

A buffered stream is a buffered stream is a buffered stream… It is not
easily possible to turn buffering on/off if it is implemented by means of
subclassing.

Dynamic Variability Illustrated

• Potential Solution: 
Mapping from runtime values to classes to be
instantiated can be implemented by conditional
statements.

• Issue: 
Such a mapping is error-prone and not extensible.  
When new variants of the class are introduced, the
mapping from configuration variables to classes to
instantiate must be changed.

10

The configuration of an object’s implementation
may depend on values from the runtime context.

…if(x) new Y() else new Z() …

Dynamic Variability Illustrated

• Potential Solution: 
Using dependency injection.

• Issue: 
Comprehensibility suffers:

• Objects are (implicitly) created by the Framework

• Dependencies are not directly visible/are rather implicit

11

The configuration of an object’s implementation
may depend on values from the runtime context.

Dynamic Variability Illustrated

• Potential Solution: 
Mapping from runtime values to object behavior can be
implemented by conditional statements in the
implementation of object’s methods.

• Issue: 
Such a mapping is error-prone and not extensible.  
When new variants of the behavior are introduced, the
mapping from dynamic variables to implementations
must be changed.

12

The behavior of an object may vary depending on
its state or context of use.

The  
Fragile Base Class 

Problem

13

Cf. Item 17 of Joshua Bloch's, Effective Java.

An Instrumented HashSet

import java.util.*;
public class InstrumentedHashSet<E> extends HashSet<E> {
 private int addCount = 0;
 public InstrumentedHashSet() { }
 public InstrumentedHashSet(int initCap, float loadFactor) {
 super(initCap, loadFactor);
 }

 @Override public boolean add(E e) { addCount++; return super.add(e); }
 @Override public boolean addAll(Collection<? extends E> c) {
 addCount += c.size();
 return super.addAll(c);
 }
 public int getAddCount() { return addCount; }

 public static void main(String[] args) {
 InstrumentedHashSet<String> s = new InstrumentedHashSet<String>();
 s.addAll(Arrays.asList("aaa", "bbb", "ccc"));
 System.out.println(s.getAddCount());
 }
}

14

The Fragile Base Class Problem Illustrated

Output?

An Instrumented HashSet

import java.util.*;
public class InstrumentedHashSet<E> extends HashSet<E> {
 private int addCount = 0;
 public InstrumentedHashSet() { }
 public InstrumentedHashSet(int initCap, float loadFactor) {
 super(initCap, loadFactor);
 }

 @Override public boolean add(E e) { addCount++; return super.add(e); }
 // @Override public boolean addAll(Collection<? extends E> c) {
 // addCount += c.size();
 // return super.addAll(c);
 // }
 public int getAddCount() { return addCount; }

 public static void main(String[] args) {
 InstrumentedHashSet<String> s = new InstrumentedHashSet<String>();
 s.addAll(Arrays.asList(“aaa", “bbb", “ccc"));
 System.out.println(s.getAddCount());
 }
}

15

The Fragile Base Class Problem Illustrated

Does this really(!)
solve the problem?

The Fragile Base Class
Problem in a Nutshell

16

Changes in base classes may lead
to unforeseen problems in
subclasses.

Inheritance Breaks Encapsulation

Fragility by dependencies on the self-call structure

• The fragility considered so far is caused by dependencies
on the self-call structure of the base class.

• Subclasses make assumptions about the calling relationship
between public and protected methods of the base
class.

• These assumptions are implicitly encoded in the overriding
decisions of the subclass.

• If these assumptions are wrong or violated by future
changes of the structure of superclass’ self-calls, the
subclass’s behavior is broken.

17

The Fragile Base Class Problem in a Nutshell

Fragility by addition of new methods

• Fragility by extending a base class with new methods that were not
there when the class was subclassed.

• Example

• Consider a base collection class.

• To ensure some (e.g., security) property, we want to enforce that
all elements added to the collection satisfy a certain predicate.

• We override every method that is relevant for ensuring the
security property to consistently check the predicate.

• Yet, the security may be defeated unintentionally if a new
method is added to the base class which is relevant for the
(e.g., security) property.

18

The Fragile Base Class Problem in a Nutshell

I/II

Fragility by addition of new methods

• Fragility by extending a base class with a method that
was also added to a subclass. I.e., we accidentally
capture a new method; the new release of the base class
accidentally includes a method with the same name and
parameter types.

• If the return types differ, your code will not compile
anymore because of conflicting method signatures.

• If the signature are compatible, your methods may get
involved in things you never thought about.

19

The Fragile Base Class Problem in a Nutshell

I/III

Fragility by addition of new methods

• Fragility by extending a base class with a method that
was also added to a subclass. I.e., we accidentally
capture a new method; the new release of the base class
accidentally includes a method with the same name and
parameter types.

• If the return types differ, your code will not compile
anymore because of conflicting method signatures.

• If the signature are compatible, your methods may get
involved in things you never thought about.

20

The Fragile Base Class Problem in a Nutshell

II/III

Fragility by addition of new methods

• Fragility by extending a base class with an overloaded
method; the new release of the base class accidentally
includes a method which make it impossible for the
compiler to determine the call target of your call.

21

The Fragile Base Class Problem in a Nutshell

III/III

class X { void m(String){…} ; void m(Object o){…}/*added*/ }

<X>.m(null) // the call target is not unique (anymore)

Taming Inheritance

22

Implementation inheritance
(extends) is a powerful way to
achieve code reuse.

But, if used inappropriately, it leads
to fragile software.

Dos and Don'ts

• It is always safe to use inheritance within a package.  
The subclass and the superclass implementation are
under the control of the same programmers.

• It is also OK to extend classes specifically designed and
documented for extension.

• Avoid inheriting from concrete classes not designed and
documented for inheritance across package boundaries.

23

Taming Inheritance

Closed Packages Assumption

-Joshua Bloch, Effective Java

Design and document for inheritance or else prohibit it.

24

Classes Must Document Self-Use

• Each public/protected method/constructor must indicate
self-use:

• Which overridable methods it invokes.

• In what sequence.

• How the results of each invocation affect subsequent
processing.

• A class must document any circumstances under which it
might invoke an overridable method. (Invocations might
come from background threads or static initializers.)

25

Taming Inheritance

Common Conventions for Documenting Self-Use

• The description of self-invocations to overridable
methods is given at the end of a method’s documentation
comment.

• The description starts with “This implementation …”.  
Indicates that the description tells something about the
internal working of the method.

26

Taming Inheritance

Example of Documentation On Self-
Invocation
• Taken from: java.util.AbstractCollection  

public boolean remove(Object o)
 
Removes a single instance of the specified element from this
collection.
…
This implementation removes the element from the collection
using the iterator's remove method.
Note that this implementation throws an
UnsupportedOperationException if the iterator returned by
this collection's iterator() method does not implement the
remove(…) method.

27

Documenting Self-Use
In API Documentation

28

Do implementation details have a
rightful place in a good API
documentation?

Example of Documentation On Self-
Invocation
• Taken from: java.util.AbstractList  

protected void removeRange(int fromIndex, int toIndex)
 
Removes from a list …

This method is called by the clear operation on this list and
its sub lists. Overriding this method to take advantage of the
internals of the list implementation can substantially improve
the performance of the clear operation on this list and its sub
lists…

This implementation gets a list iterator positioned before
fromIndex and repeatedly calls ListIterator.next and
ListIterator.remove. Note: If ListIterator.remove requires
linear time, this implementation requires quadratic time.

29

Carefully Design and Test Hooks To
Internals
• Provide as few protected methods and fields as possible.

• Each of them represents a commitment to an
implementation detail.

• Designing a class for inheritance places limitations on the
class.

• Do not provide too few hooks.

• A missing protected method can render a class
practically unusable for inheritance.

30

Constructors Must Not
Invoke Overridable

Methods

31

Standing Rule

Constructors Must Not Invoke
Overridable Methods
class JavaSuper {
 public JavaSuper() { printState(); }

 public void printState() { System.out.println("no state"); }
}

class JavaSub extends JavaSuper {
 private int x = 42; // the result of a tough computation

 public void printState() { System.out.println("x = " + x); }
}

class JavaDemo {
 public static void main(String[] args) {
 JavaSuper s = new JavaSub();
 s.printState();
 }
}

32

Result:
	 x = 0
	 x = 42

Constructors Must Not Invoke
Overridable Methods
class ScalaSuper {

 printState(); // executed at the end of the initialization

 def printState() : Unit = { println("no state”) }
}

class ScalaSub extends ScalaSuper {
 var y: Int = 42 // What was the question?
 override def printState() : Unit = { println("y = "+y) }
}

object ScalaDemo extends App {
 val s = new ScalaSub
 s.printState() // after initialization
}

33

Result:
	 y = 0
	 y = 42

Non-Idiomatic Scala

Constructors Must Not Invoke
Overridable Methods
class Super {

 // executed at the end of the initialization
 printState();

 def printState() : Unit = { println("no state") }
}

class Sub(var y: Int = 42) extends Super {
 override def printState() : Unit = { println("y = "+y) }
}

object Demo extends App {
 val s = new Sub
 s.printState() // after initialization
}

34

Result:
	 y = 42
	 y = 42

Idiomatic Scala

Initializers Must Not Invoke
Overridable Methods
trait Super {
 val s: String
 def printState() : Unit = { println(s) }

 printState();
}

class Sub1 extends Super { val s: String = 110.toString }
class Sub2 extends { val s: String = 110.toString } with Super

new Sub1()
new Sub2()

35

Result:
null
110

Variations at the Level of
Multiple Objects

36

So far, we considered variations,
whose scope are individual classes.
But, no class is an island!

itemAt(int) : MenuItem
itemCount() : int
addItem(MenuItem) : void
addAction(String,Action) : void

Menu

MenuItem

label: String
action : Action

displayText() : String
draw(Graphics): void

PopupMenu MenuBar

CascadeMenu
Item

CheckMenu
Item

RadioMenu
Item

* {ordered}

1

* {ordered}

1

Window Menus
Illustrative Example

37

Different Kinds of Menus

abstract class Menu {
 List<MenuItem> items;

 MenuItem itemAt(int i) {
 return items.get(i);
 }

 int itemCount() { return items.size(); }
 void addItem(MenuItem item) { items.add(item); }
 void addAction(String label, Action action) {
 items.add(new MenuItem(label, action));
 }
 ...
}

class PopupMenu extends Menu { ... }

class MenuBar extends Menu { ... }
38

Different Kinds of Menu Items

class MenuItem {
 String label;
 Action action;

 MenuItem(String label, Action action) {
 this.label = label;
 this.action = action;
 }

 String displayText() { return label; }

 void draw(Graphics g) { … displayText() … }
}

class CascadeMenuItem extends MenuItem {
 PopupMenu menu;

 void addItem(MenuItem item) { menu.addItem(item); }
 …
}

class CheckMenuItem extends MenuItem { … }

class RadioMenuItem extends MenuItem { … }

39

Inheritance for Optional Features of
Menus
• Variations of menu functionality affect multiple objects

constituting the menu structure.

• Since these objects are implemented by different
classes, we need several new subclasses to express
variations of menu functionality.

• This technique has several problems, which will be
illustrated in the following by a particular example
variation: Adding accelerator keys to menus.

40

Menu Items with Accelerator Keys

class MenuItemAccel extends MenuItem {
 KeyStroke accelKey;

 boolean processKey(KeyStroke ks) {
 if (accelKey != null && accelKey.equals(ks)) {
 performAction();
 return true;
 }
 return false;
 }

 void setAccelerator(KeyStroke ks) { accelKey = ks; }

 void draw(Graphics g) {
 super.draw(g);
 displayAccelKey();
 }
 …
}

41

Menus with Accelerator Keys

abstract class MenuAccel extends Menu {

 boolean processKey(KeyStroke ks) {
 for (int i = 0; i < itemCount(); i++) {
 if (((MenuItemAccel) itemAt(i)).processKey(ks)) return true;
 }
 return false;
 }

 void addAction(String label, Action action) {
 items.add(new MenuItemAccel(label, action));
 }
 …
}

42

Non-Explicit Covariant Dependencies
• Covariant dependencies between objects:

• The varying functionality of an object in a group may need to access the
corresponding varying functionality of another object of the group.

• The type declarations in our design do not express covariant dependencies
between the objects of a group.

• References between objects are typed by invariant types, which provide a fixed
interface.  

abstract class MenuAccel extends Menu {

 boolean processKey(KeyStroke ks) {
 for (int i = 0; i < itemCount(); i++) {
 if (((MenuItemAccel) itemAt(i)).processKey(ks)) return true;
 }
 return false;
 }
 …
}

43

Covariant dependencies are emulated by type-casts.

Instantiation-Related Reusability Problems
• Code that instantiates the classes of an object group cannot be reused with

different variations of the group.  

abstract class Menu {

 void addAction(String label, Action action) {
 items.add(new MenuItem(// <= Creates a MenuItem
 label, action
));
 }
 …
}

abstract class MenuAccel extends Menu {

 void addAction(String label, Action action) {
 items.add(new MenuItemAccel(// <= Creates a MenuItemAccel
 label, action
));
 }
 …
}

44

Instantiation code can be spread all over the application.

Menu Contributor for Operations on Files
• A menu of an application can be built from different reusable

pieces, provided by different menu contributors. 

interface MenuContributor {
 void contribute(Menu menu);
}

class FileMenuContrib implements MenuContributor {

 void contribute(Menu menu) {
 CascadeMenuItem openWith = new CascadeMenuItem(”Open With”);
 menu.addItem(openWith);
 MenuItem openWithTE =
 new MenuItem(”Text Editor”, createOpenWithTEAction());
 openWith.addItem(openWithTE);

 MenuItem readOnly =
 new CheckMenuItem(”Read Only”, createReadOnlyAction());
 menu.addItem(readOnly)
 …
 }
 …
}

45

Instantiation-Related Reusability Problem
• In some situations, overriding of instantiation code can

have a cascade effect.

• An extension of class C mandates extensions of all
classes that instantiate C.

• This in turn mandates extensions of further classes that
instantiate classes that instantiate C.

46

Can you imagine a workaround to address instantiation-related problems?

createProdA()
createProdB()

«interface»
AbstractFactory

createProdA()
createProdB()

ConcreteFactory

«interface»
AbstractProductA

ProductA1 ProductA2

«interface»
AbstractProductB

ProductB1 ProductB2createProdA()
createProdB()

ConcreteFactory

Client

Abstract Factory Pattern

47

Factories for Instantiating Objects
interface MenuFactory {
 MenuItem createMenuItem(String name, Action action);
 CascadeMenuItem createCascadeMenuItem(String name);
 …
}

48

Factories for Instantiating Objects
class FileMenuContrib implements MenuContributor {

 void contribute(
 Menu menu,
 MenuFactory factory // <= we need a reference to the factory
) {
 MenuItem open = factory.createCascadeMenuItem(”Open”);
 menu.addItem(open);

 MenuItem openWithTE = factory.createMenuItem(...);
 open.addItem(openWithTE);
 …
 MenuItem readOnly = factory.createCheckMenuItem(...);
 menu.addItem(readOnly)
 …
 }
 …
}

49

Factories for Instantiating Objects
class BaseMenuFactory implements MenuFactory {
 MenuItem createMenuItem(String name, Action action) {
 return new MenuItem(name, action);
 }
 CascadeMenuItem createCascadeMenuItem(String name) {
 return new CasadeMenuItem(name);
 }
 …
}

class AccelMenuFactory implements MenuFactory {

 MenuItemAccel createMenuItem(String name, Action action) {
 return new MenuItemAccel(name, action);
 }

 CascadeMenuItemAccel createCascadeMenuItem(String name) {
 return new CasadeMenuItemAccel(name);
 }
 …
}

50

Deficiencies Of The Factory Pattern
• The infrastructure for the design pattern must be implemented and maintained.

• Increased complexity of design.

• Correct usage of the pattern cannot be enforced:

• No guarantee that classes are instantiated exclusively over factory methods,

• No guarantee that only objects are used together that are instantiated by the
same factory.

• Issues with managing the reference to the abstract factory.

• The factory can be implemented as a Singleton for convenient access to it
within entire application.  
This solution would allow to use only one specific variant of the composite within
the same application.

• A more flexible solution requires explicit passing of the reference to the
factory from object to object.  
Increased complexity of design.

51

Combining Composite & Individual Variation

• Feature variations at the level of object composites (e.g.,
accelerator key support).

• Variations of individual elements of the composite (e.g.,
variations of menus and items).

52

Problem: How to combine variations of individual
classes with those of features of a class composite.

Menu Items with Accelerator Keys
class MenuItemAccel extends MenuItem {

 KeyStroke accelKey;
 boolean processKey(KeyStroke ks) {
 if (accelKey != null && accelKey.equals(ks)) {
 performAction();
 return true;
 }
 return false;
 }
 void setAccelerator(KeyStroke ks) { accelKey = ks; }
 void draw(Graphics g) { super.draw(g); displayAccelKey(); }
 …

}

class CascadeMenuItemAccel extends ???
class CheckMenuItemAccel extends ???
class RadioMenuItemAccel extends ???

53

How to extend subclasses of MenuItem for different variants of items with the
accelerator key feature?
We need subclasses of them that also inherit the additional functionality in
MenuItemAccel.

Menus with Accelerator Keys
abstract class MenuAccel extends Menu {

 boolean processKey(KeyStroke ks) {
 for (int i = 0; i < itemCount(); i++) {
 if (((MenuItemAccel) itemAt(i)).processKey(ks)) return true;
 }
 return false;
 }

 void addAction(String label, Action action) {
 items.add(new MenuItemAccel(label, action));
 }
 …

}

class PopupMenuAccel extends ???
class MenuBarAccel extends ???

54

How to extend subclasses of Menu with the accelerator key feature?
We need subclasses of them that also inherit the additional functionality in
MenuAccel.

In languages with single inheritance,
such as Java, combining composite
& individual variations is non-trivial

and leads to code duplication.

55

A

B C

Client

The Problem in a Nutshell

• We need to extend A (and in
parallel to it also its
subclasses B and C) with an
optional feature (should not
necessarily be visible to
existing clients).

• This excludes the option of
modifying A in-place, which
would be bad anyway
because of OCP.

Alternative Designs

57

A

B C

ClientA'

B' C'

A

B C

Client

B' C'

Combining Composite and Individual Variations

class PopupMenuAccel extends PopupMenu, MenuAccel { }
class MenuBarAccel extends MenuBar, MenuAccel { }
```

```Java
class CascadeMenuItemAccel extends CascadeMenuItem, MenuItemAccel {
 boolean processKey(KeyStroke ks) {
 if (((PopupMenuAccel) menu).processKey(ks)) return true;
 return super.processKey(ks);
 }
}

class CheckMenuItemAccel extends CheckMenuItem, MenuItemAccel { ... }
class RadioMenuItemAccel extends RadioMenuItem, MenuItemAccel { ... }

58

Using some form of multiple inheritance…

Summary

• General agreement in the early days of OO:  
Classes are the primary unit of organization.

• Standard inheritance operates on isolated classes.

• Variations of a group of classes can be expressed by
applying inheritance to each class from the group
separately.

• Over the years, it turned out that sets of collaborating
classes are also units of organization. In general,
extensions will generally affect a set of related classes.

59

(Single-) Inheritance does not appropriately support
OCP with respect to changes that affect a set of

related classes!

Almost all features that proved useful for single
classes are not available for sets of related

60

Desired/Required Features

• Incremental programming at the level of sets of related classes. 
In analogy to incremental programming at the level of
individual classes enabled by inheritance. 
(I.e., we want to be able to model the accelerator key feature
by the difference to the default menu functionality.)

• Polymorphism at the level of sets of related classes → Family
polymorphism. 
In analogy to subtype polymorphism at the level of individual
classes.  
(I.e., we want to be able to define behavior that is polymorphic
with respect to the particular object group variation.)

61

Family Polymorphism

62

itemAt(int) : MenuItem
itemCount() : int
addItem(MenuItem) : void
addAction(String,Action) : void

Menu

MenuItem

label: String
action : Action

displayText() : String
draw(Graphics): void

PopupMenu MenuBar

CascadeMenu
Item

CheckMenu
Item

RadioMenu
Item

* {ordered}

1

* {ordered} 1

processKey(KeyStroke) : void

Menu
MenuItem

accelKey: KeyStroke

processKey(KeyStroke) : boolean
setAccelerator(KeyStroke) : void
draw(Graphics): void

PopupMenu MenuBar

processKey(KeyStroke) : Boolean

CascadeMenu
Item

CheckMenu
Item

RadioMenu
Item

* {ordered}
1

* {ordered}

1

The Design of AWT and Swing

63

A small subset of the core of AWT (Component, Container, Frame, Window) and Swing.

Component

Container Button

Window

Franme

java.awt

update() : void

accessibleContext

JComponent

JButton

javax.swing

update() : void
setLayout() : void
setRootPane() : void

rootPane
accessibleContext

JWindow

update() : void
setLayout() : void
setRootPane() : void

rootPane
accessibleContext

JFrame

AWT Code

public class Container extends Component {
 int ncomponents;
 Component components[] = new Component[0];

 public Component add (Component comp) {
 addImpl(comp, null, -1);
 return comp;
 }

 protected void addImpl(Component comp, Object o, int ind) {
 …
 component[ncomponents++] = comp;
 …
 }

 public Component getComponent(int index) {
 return component[index];
 }
}

64

The code contains no type checks and/or type casts.

Swing Code

public class JComponent extends Container {

 public void paintChildren (Graphics g) {
 …
 for (; i > = 0 ; i--) {
 Component comp = getComponent (i);
 isJComponent = (comp instanceof JComponent); // type check
 …
 ((JComponent)comp).getBounds(); // type cast
 …
 }
 }
}

65

The code contains type checks and/or type casts.

About the Development
of Swing

66

“In the absence of a large existing base of clients of
AWT, Swing might have been designed differently, with
AWT being refactored and redesigned along the way.

Such a refactoring, however, was not an option and we can
witness various anomalies in Swing, such as duplicated
code, sub-optimal inheritance relationships, and excessive
use of run-time type discrimination and downcasts.”

Takeaway

• Inheritance is a powerful mechanism for supporting
variations and stable designs in presence of change.  
Three desired properties:

• Built-in support for OCP and reduced need for
preplanning and abstraction building.

• Well-modularized implementations of variations.

• Support for variation of structure/interface in addition to
variations of behavior.

• Variations can participate in type declarations.

67

Takeaway

• Inheritance has also deficiencies

• Variation implementations are not reusable and not easy to
compose.

• Code duplication.

• Exponential growth of the number of classes; complex designs.

• Inheritance does not support dynamic variations – configuring the
behavior and structure of an object at runtime.

• Fragility of designs due to lack of encapsulation between parents
and heirs in an inheritance hierarchy.

• Variations that affect a set of related classes are not well
supported.

68

