
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Builder Pattern

Summer Semester 2015

The Builder Pattern

2

Divide the construction of multi-part
objects in different steps, so that
different implementations of these
steps can construct different
representations of object

+buildPartA()
+buildPartB()
+getResult() : Product

Builder
«interface»

Director

+construct

+buildPartA()
+buildPartB()
+getResult() : Product

ConcreteBuilder

«use»

Product

Builder - Structure

3

Builder defines the individual steps of the construction of Product.

Director knows in which order to construct Product.

ConcreteBuilder implements the steps of construction.

Example
Car Builder

🚐 🚙 🚓 🚕 🚗

4

STANDARD_ENGINE
SPORT_ENGINE
SMALL_ENGINE

Engine
«enumeration»

Car

+setEngine(Engine)
+setInterior(Interior)

PLASTIC_INTERIOR
WOODEN_INTERIOR
METAL_INTERIOR

Interior
«enumeration»

🚐 🚙 🚓 🚕 🚗

Builder - A Car Builder

• We want to construct different
types of cars.

• In this example, cars have an
engine and an interior.

CarConstructionDirector

+setCarBuilder(CarBuilder)
+constructCar()
+getCar() : Car

Car

+setEngine(Engine)
+setInterior(Interior)

CarBuilder
«abstract»

+buildCar()
+buildEngine()
+buildInterior()
+getCar() : Car

carcarBuilder

«method» {
 return builder.getCar();
}

«method» {
 builder.buildCar();
 builder.buildEngine();
 builder.buildInterior();
}

🚐 🚙 🚓 🚕 🚗

Builder - A Car Builder

6

CarBuilder defines the methods to construct car parts. Concrete builders must implement these
methods. For convenience, the instantiation of cars (buildCar()) is implemented in CarBuilder.

CarConstructionDirector is configured with a CarBuilder and calls the construction methods in the correct
order.

🚐 🚙 🚓 🚕 🚗

Two Possible Car Builders
class CheapCarBuilder extends CarBuilder {
 void buildEngine() {
 car.setEngine(Engine.SMALL_ENGINE);
 }

 void buildInterior() {
 car.setInterior(Interior.PLASTIC_INTERIOR);
 }
}

class LuxuryCarBuilder extends CarBuilder {

 void buildEngine() {
 car.setEngine(Engine.SPORT_ENGINE);
 }

 void buildInterior() {
 car.setInterior(Interior.WOODEN_INTERIOR);
 }
}

7

Assessment of the Builder Pattern

Advantages:
• Creation of objects can be configured at runtime.
• Concrete builders can use complex logic.  

E.g. a car builder creating cars depending on available parts in storage.
• Good way to create composite structures.

Disadvantages:
• May yield many classes.
• Only works if all objects can be constructed using the same order.

Example
Collections

8

The map operation
• Takes the elements of a collection and applies a given

function f to create the elements of the target collection. 
 
Collection[E]{  

def map[T](f: E=>T):Collection[T] = {…}  
}

• Let’s assume that we want/have to transform the elements
and the type of the collection at the same time. 
E.g., we want to map from a List of Strings to an Array of
type Array[SHA256] in one step as shown in the following
example: 
val hashes : Array[SHA256] =  

List(“a”,“b”,“c”) map {e => SHA256(e)}
9

1. Apply the Builder Pattern
trait Builder[T,C[T]] { 
 def add(t : T) : Unit 
 def build : C[T] 
} 
 
class ListBuilder[T] extends Builder[T,List] { 
 private var l : List[T] = List.empty 
 def add(t : T) : Unit = l ::= t  
 def build : List[T] = l 
} 
 
case class Singleton[T](t : T) { 
 def map[X,C[X]](f : T => X) (builder : Builder[X,C]) : C[X] = {  
 builder.add(f(t)) 
 builder.build 
 } 
} 
 
Singleton(100).map(_.toString)(new ListBuilder)

10

Given the current solution we are now able to determine the type of the target collection that is created
while we map the elements.

However, the current solution always requires that we explicitly pass in an instance of Builder.

2. Automatic “Selection” of the Builder 
(Using implicit Factories for Builders)

// The existing Builders are kept 
 
trait BuilderFactory[C[_]] { 
 def create[T]() : Builder[T,C] 
} 
 
implicit val lbf = new BuilderFactory[List] { 
 def create[T]() = new ListBuilder[T] 
} 
 
case class Singleton[T](t : T) { 
 def map[X,C[X]](f : T => X) (implicit bf : BuilderFactory[C]) : C[X] = { 
 val builder = bf.create[X]() 
 builder.add(f(t)) 
 builder.build 
 } 
} 
 
Singleton(100).map(_.toString) // the (only) builder is automatically selected

11

This solution now enables us to perform a map without having to specify the target collection; however,
the result type “List[String]” is not as expected. Adding further implicitly available factories and builders;
e.g.

implicit val setbf = new BuilderFactory[Set] { def create[T]() = new SetBuilder[T] }  
implicit val singletonbf = new BuilderFactory[Singleton] { def create[T]() = new SingletonBuilder[T] }

would only lead to the problem that the compiler is no longer able to automatically select the Factory,
because the selection is ambiguous.

Final Solution
trait Builder[T,C[T]] { 
 def add(t : T) : Unit 
 def build : C[T] 
} 
class ListBuilder[T] extends Builder[T,List] { 
 private var l : List[T] = List.empty 
 def add(t : T) : Unit = l ::= t  
 def build : List[T] = l 
} 
class SetBuilder[T] extends Builder[T,Set] { 
 private var l : Set[T] = Set.empty 
 def add(t : T) : Unit = l += t  
 def build : Set[T] = l 
} 
 
trait BuilderFactory[C[_]] { def create[T]() : Builder[T,C] } 
 
val lbf = new BuilderFactory[List] { 
 def create[T]() = new ListBuilder[T] 
} 
 
case class Singleton[T](t : T) { 
 def map[X,C[X]]( 

f : T => X 
) (implicit bf : BuilderFactory[C]) : C[X] = { 

 val builder = bf.create[X]() 
 builder.add(f(t)) 
 builder.build 
 } 
} 
 

class SingletonBuilder[T] extends Builder[T,Singleton] { 
 private var l : Singleton[T] = null 
 def add(t : T) : Unit = if (l != null) throw new
IllegalStateException else l = Singleton(t) 
 def build : Singleton[T] = l 
} 
 
trait LowPriorityImports {  
 implicit val lbf = new BuilderFactory[List] { 
 def create[T]() = new ListBuilder[T] 
 } 
 implicit val sbf = new BuilderFactory[Set] { 
 def create[T]() = new SetBuilder[T] 
 } 
} 
object HighPriorityImports extends LowPriorityImports{ 
 implicit val singletonbf = new BuilderFactory[Singleton] { 
 def create[T]() = new SingletonBuilder[T] 
 } 
} 
import HighPriorityImports._ 
 
Singleton(100).map[String,List](_.toString) 
 
Singleton(100).map(_.toString) // => : Singleton[String]

12

By prioritizing the implicitly available BuilderFactories we now have found a solution that enables a very
natural usage of the map function, but still provides all possibilities!

Takeaway
• Use Abstract Factory for creating objects depending on

finite numbers of factors you know in advance.  
E.g. if there are only three kinds of cars.

• Use Builder for creating complex objects depending on
unbound number of factors that are decided at runtime.  
E.g. if cars can be configured with multiple different parts.

13

Builder vs. Abstract Factory Pattern

• Abstract Factory focuses on creating multiple objects of a common family.
• Abstract Factory knows what object to create.
• Configuration is fixed after deployment of the software.

• Builder focuses on creating complex objects step by step.
• The director knows how to construct the object.
• Configuration is chosen at runtime via the concrete builder.

