Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik
Technische Universitat Darmstadt

Software Product Line Engineering

based on slides created by Sarah Nadi

Examples of Software Product Lines

~ ya
E =
—

Moobie 9 v Control Software

W

Linux Kernel

=

2

Software product lines are ubiquitous!

Resources

er Saake

Feature-Oriented
Software
Product Lines

Concepts and Implementation

Software Product Lines

Software Engineering Institute
Carnegie Mellon University

“A software product line (SPL) is a set of software-
intensive systems that share a common, managed
set of features satisfying the specific needs of a
particular market segment or mission and that are
developed from a common set of core assets in a

prescribed way.”

Advantages of SPLs

¢ Tailor-made software
* Reduced cost
e Improved quality

¢ Reduced time to market

Challenges of SPLs

* Upfront cost for preparing reusable parts
» Deciding which products you can produce early on
* Thinking about multiple products at the same time

« Managing/testing/analyzing multiple products

Feature-oriented SPLs

Thinking of your product line in terms of the

features offered.

Examples of a Feature
(Graph Product Line)

N/

- —
N\ / A4
feature: feature:

edge color edge type

(directed vs. undirected)
8

N/
feature:
cycle detection

Examples of a Feature
(Collections Product Line)

 Serializable

* Cloneable

» Growable/Shrinkable/Subtractable/Clearable
 Traversable/lterable

* Supports parallel processing

Feature

A feature is a characteristic or end-user-visible
behavior of a software system. Features are used
in product-line engineering to specify and
communicate commonalities and differences of
the products between stakeholders, and to guide
structure, reuse, and variation across all phases of
the software life cycle.

What features would a

Smartphone SPL contain?

Integrated hardware (e.g., size and resolution of the display, network connections support (Bluetooth
4.x), Wireless 802.11abcg..., amount of memory, storage capacity)

- Integrated software

(Product differentiation in the smartphone market is (also) done purely based on software features.)

Feature Dependencies

Constraints on the possible feature selections!

feature: <—deRendson feature;

edge type cycle detection
(directed)

Product

A product of a product line is specified by a valid
feature selection (a subset of the features of the

product line). A feature selection is valid if and only
if it fulfills all feature dependencies.

Valid Products

Feature Dependencies Product Configurations

Directed Cycle

{_/ y ;_/ DL Edge Detection
- Product 1 ‘/ ‘/ ‘/

feature: ooy feature:

edge type cycle

(directed) detection Product 2 ‘/ ‘/

Product 3

Ask yourself which product is (injvalid?

Valid Products

Feature Dependencies

feature: . feature
edge type cycle
(directed) detection

Product Configurations

Directed Cycle

DL Edge Detection

Product 1

Product 2 not valid v

Product 3

The dependency constraint is not satisfied by product 2.

|dentify feature dependencies
in a Smartphone SPL?

Software Product Line Engineering

Problem Space

Solution Space

Product
—

'
i
) - " ! — "
£ Domain analysis ! Domain implementation
° s ' -
S Domain | g e ;
S knowledge Mapping
2 e #
. 2 % | g
£ 2 = ' pes T
] | !
£ (incl. scoping, !
8 variability modeling) \ (models, source code, ...]
|
1 Common
New . "
————————— —o== U _ oL - - Features = = == = = = =l= = = = = = = = = = — - ~ Limplementafion - - = = - =
=3 requirements i ’
e | artifacts
£ '
H Requirements analysis 1 Product derivation
< e |
ES !
€ Customer Fedture
° o ekt
o needs selegtion
S T
2 '
] |
2 '
o | (incl. validation and verification)
<]
17

Software Product Line Engineering

Perspective of
stakeholders’
problems,
requirements,
view on entire

Perspective of
developers and

domain vendors

Problem Space Solution Space
2 Domain analysis. Domain implementation
H
2 pomain
S nowleddh | Mogping
H
H e

o copig,

8 veriabilty modskng)

Y I I
2 Tequirements l L
g Requirements analysis Product derivation
£ e
2 cusom Fodure
S needs seleion ok
Sl =
k]
<
2 k. vodaonand vt

Development for reuse

* Analyze domain & develop reusable
artifacts

« Does not result in a specific product

o Prepares artifacts to be used in
various products

Development with reuse

* Develop specific product for needs of
a particular customer

* Repeated for every derived product

Software Product Line Engineering

Perspective of
stakeholders’
problems,
requirements,
view on entire
domain

Perspective of
developers and
vendors

Problem Space

Domain er

Solution Space

engineering

Product d

& 0°
X
oo "

Development for reuse

* Analyze domain & develop reusable
artifacts

* Does not result in a specific product

* Prepares artifacts to be used in
various products

Development with reuse

* Develop specific product for needs of
a particular customer
* Repeated for every derived product

Domain Analysis

* Domain scoping
Deciding on product line’s extent or range

* Domain modeling

» Captures & documents the commonalities &
variabilities of the scoped domain

» Often captured in a feature model

20

Feature Model

* Document the features of a product line & their
relationships

* Can be translated into propositional logic

21

Graph Library

Feature Model

Graph Library

[2]

£

b= Mandatory Feature i

© Optional Feature
g Edge Type « Graph Libr Algorithm =» Graph Library
c

8 Edge Type Search Weighted Algorithm

2 XOR Group OR Group

o] (exactly one has to be selegted) (2Ngast one has to be selected)
g

2

T Directed Undirected | | BFS DFS Cyle Shortest Path MST Transpose

Cross-tree /a\

Constraints Prim Kruskal

MST = Undirected A Weighted
Cycle = Directed

22

MST = Minimum Spanning Tree

Hierarchal Relationships: Parent/child relationship - Child cannot be selected unless parent is selected

Graph Library

Feature Model in Propositional Logic

root(GraphLibrary)
A mandatory(GraphLibrary,EdgeType)
A optional(GraphLibrary,Search)
A optional(GraphLibrary, Weighted) e e s vogtes] [Agem
A or(Search,{BFS,DFS})

Grapn Ubrary

Orected| [Unaroctea] [BFs| [oFs] [oye| [sworestpan| [mST| [Tanspose

MST = Undirected A Weighted

A alternative(MST,{Prim,Kruskal}) Cycle = Diccied] s
A (MST = Weighted)

A (Cycle = Directed)
AC)

23

Domain Implementation

* Underlying code must be variable

* Dimensions of implementation techniques

* Binding times: compile-time binding, load-time binding
and run-time binding.

* Representation: annotation vs composition

24

Domain Implementation
(Representation)

Graph Library Graph Library

Annotation-based Approach

Composition-based Approach

25

Variability Implementation

* Parameters

» Design patterns
* Build systems
» Preprocessors

 feature-oriented programming

26

- Parameters - binding time: runtime
- Design Patterns - binding time: compile-time/run-time

Variability Implementation
Parameters

* simple

* flexible

* language support

- code bloat

- computing overhead

- non-modular solution

27

annotation-based; binding time: run time

Variability Implementation
Design Patterns

* well established
* easy to communicate design decisions
- architecture overhead

- need to preplan extensions

28

composition; binding time: run time

Variability Implementation
Build Systems

* simple if features can be mapped into files
* can control other types of parameters
- code duplication if finer level of granularity needed

- hard to analyze

29

(Here, the build-script is extended to model the variability!)
annotation (in the build-script); binding time: compile time

Variability Implementation
Preprocessors

* Easy to use, well-known

* Compile-time customization removes unnecessary code
* Supports arbitrary levels of granularity

- No separation of concerns (lots of scattering & tangling)
- Can be used in an undisciplined fashion

- Prone to simple (syntactic) errors

30

annotation; binding time: compile time

composition; binding time: compile time
Variability Implementation

Feature-Oriented Programming

* easy-to-use language mechanism, requiring minimal
language extensions

* compile-time customization of source code

* direct feature traceability from a feature to its
implementation

requires composition tools

- granularity at level of methods

- only academic tools so far, little experience in practice
31

composition; binding time: compile time
Research Topics

* feature-model reengineering/extraction from existing
code

 detecting inconsistencies between the feature-model and
its “implementation”

* feature interactions - intended vs. unintended?

32

A Software Product Line for Static Analyses
kY ke

33

Michael Eichberg and Ben Hermann

SOAP'14; Proceedings of the 3rd ACM SIGPLAN International Workshop on the State of the Art in Java
Program Analysis

ACM 2014

A Software Product Line for
Static Analyses

* Commonalities

* we need to be able to process .class files

* Variability

» enable different representation for .class files
(e.g., if you want to write a disassembler a 1:1
representation is needed; for most static analyses a
more abstract representation is required.)

* only reify those parts that are needed

Requirement: composition based approach

34

binding time: compile-time

Processing Java
.class Files

Class File Representation

ClassFileReader C

Constant! solue b

kipl Unk

35

Processing Java.class Files

Base Trait which defines the general infrastructure.
trait ClassFileReader{

I* Abstract over the representation of the ... */

type ClassFile

type Constant_Pool

type Fields ClassFileReader ConstantPoolReader | | MethodsReader
type Methods

type Attributes

/I Methods to read in the respective data structures. */ ConstantPoolBinding | | resolved.MethodsBinding native.Methods|
def Constant_Pool(in: DatalnputStream): Constant_Pool A T

def Fields(in: DatalnputStream, cp: Constant_Pool): Fields H :

def Methods(in: DatalnputStream, cp: Constant_Pool): Methods H H

[implies_ _ _ _1
/* Factory method to create a representation of a Class File. */
def ClassFile(

.../l Version information, defined type, etc.

fields: Fields,

methods: Methods,
attributes: Attributes)(implicit cp: Constant_Pool): ClassFile

def ClassFile(in: DatalnputStream): ClassFile = {
J/ read magic and version information

val cp = Constant_Pool(in)

val fields = Fields(in,cp)

val methods = Methods(in,cp)

val attributes = Attributes(in,cp)

/I call factory method

ClassFile(... fields,methods, attributes)(cp)

36

Class File Representy

Processing Java.class Files

Trait which implements the MethodsReader feature!

trait i extends {
this: C with =

type Method_Info = de.tud.cs.st.bat.resolved.Method
def Method_Info(

accessFlags: Int, reified cross-tree constraint
name: Int,

descriptor: Int,
attributes: Attributes

)implicit cp: Constant_Pool): Method_Info =
creare Method representation

}

Class File Representation

ClassFileReader ConstantPoolReader MethodsReader At

ConstantP ved. tive Ul

37 A ;

Processing Java.class Files

Product configurations

class Java7ClassFilesPublicinterface
extends ClassFileBinding
with ConstantPoolBinding
with FieldsBinding
with MethodsBinding
with AttributesReader
with SkipUnknown_attributeReader
with AnnotationsBindin
with InnerCIasses,aﬂriguleBinding
with InterfacesBinding
I further attributes related to a class' public interface

class Java7ClassFiles
extends Java7ClassFilesPublicinterface
with CodeAttributeBinding
with StackMapTable_attributeBinding Class File Representation
with LineNumberTable_attributeBinding
with LocalVariableTable_attributeBinding
i Bootphiethads abUSNGNG claseicheader| 0

C resolved. nati Unl b

SkipUnknownAttributel

Analyzing Methods

(Implemented using a second product line; which
supports several products of the first product line.)

Abstract Interpretation Domain

- e N
uction uction IntegerValues| | FloatValues
Typeﬁ TypeLevel | MultipleOrigins| | TypeLevel | Signed

additional J \) specialized
handling handling for

RecordValues for invoke StringValues| | ClassValues certain|
instructions values

39

Michael Eichberg, Karl Klose, Ralf Mitschke and Mira Mezini
13th International Symposium on Component Based Software Engineering
Springer; 2010

40

