
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Software Product Line Engineering

Winter Semester 16/17

based on slides created by Sarah Nadi

Examples of Software Product Lines

2

📱 🚐
🚙🚗
🖥💻

⌚
Linux Kernel

Mobile OS Control Software

Software product lines are ubiquitous!

Resources

3

Software Product Lines
Software Engineering Institute
Carnegie Mellon University

4

“A software product line (SPL) is a set of software-
intensive systems that share a common, managed
set of features satisfying the specific needs of a
particular market segment or mission and that are
developed from a common set of core assets in a
prescribed way.”

Advantages of SPLs

• Tailor-made software

• Reduced cost

• Improved quality

• Reduced time to market

5

SPLs
 ar

e u
biq

uit
ou

s

Challenges of SPLs

• Upfront cost for preparing reusable parts

• Deciding which products you can produce early on

• Thinking about multiple products at the same time

• Managing/testing/analyzing multiple products

6

Feature-oriented SPLs

7

Thinking of your product line in terms of the
features offered.

Examples of a Feature
(Graph Product Line)

8

feature:
edge color

feature:
edge type 

(directed vs. undirected)

feature:
cycle detection

Examples of a Feature  
(Collections Product Line)
• Serializable

• Cloneable

• Growable/Shrinkable/Subtractable/Clearable

• Traversable/Iterable

• Supports parallel processing

9

Feature

10

A feature is a characteristic or end-user-visible
behavior of a software system. Features are used
in product-line engineering to specify and
communicate commonalities and differences of
the products between stakeholders, and to guide
structure, reuse, and variation across all phases of
the software life cycle.

What features would a
Smartphone SPL contain?

11

Discussion

- Integrated hardware (e.g., size and resolution of the display, network connections support (Bluetooth
4.x), Wireless 802.11abcg…, amount of memory, storage capacity)

- Integrated software  
(Product differentiation in the smartphone market is (also) done purely based on software features.)

Feature Dependencies

12

feature:
edge type 

(directed)

feature:
cycle detection

Constraints on the possible feature selections!

depends on

Product

13

A product of a product line is specified by a valid
feature selection (a subset of the features of the
product line). A feature selection is valid if and only
if it fulfills all feature dependencies.

Valid Products

14

Feature Dependencies

feature:
edge type 
(directed)

feature:
cycle

detection

depends on

Product Configurations

Edge Color Directed
Edge

Cycle
Detection

Product 1 ✓ ✓ ✓
Product 2 ✓ ✓
Product 3 ✓ ✓

Ask yourself which product is (in)valid?

Valid Products

15

Feature Dependencies

feature:
edge type 
(directed)

feature:
cycle

detection

depends on

Product Configurations

Edge Color Directed
Edge

Cycle
Detection

Product 1 ✓ ✓ ✓
Product 2 ✓ ✓
Product 3 ✓ ✓

not valid

The dependency constraint is not satisfied by product 2.

Identify feature dependencies
in a Smartphone SPL?

16

Discussion

Software Product Line Engineering

17

Software Product Line
Engineering

18

20 2 A Development Process for Feature-Oriented Product Lines

Fig. 2.1 Overview of an engineering process for software product lines

In the past, software product lines have been developed for a wide variety of
domains, including operating systems, database systems, middleware, automotive
software, compilers, healthcare applications, and many more.

The broader the domain of a product line is the larger is the number of possible
stakeholders’ requirements that can be covered in the form of individually tailored
products. However, the broader the domain, the smaller is the set of similarities
among products. For example, the domain of system software is huge, which includes
operating systems, drivers, network software, database systems, and many more.
Although there are similarities that could be exploited in system software, individual
systems have substantial differences, which decrease potential for reuse. Focusing on
the (sub)domain of database systems or even embedded database systems, increases
the reuse potential, while keeping maintenance effort acceptable. The bottom-line is
that a proper scoping of the target domain is essential, as we discuss further in Sect.
2.2.1.

A development process for software product lines has to take these peculiarities
into account. Two issues play a crucial role: the explicit handling of variability and
the systematic reuse of implementation artifacts. For both, an appropriate structuring
of process and software artifacts is imperative.

The specific characteristics of software product lines lead to a separation between
domain engineering and application engineering and between problem space and
solution space. In Fig. 2.1, we illustrate a two-dimensional structure with four clusters
of tasks in product-line development and the mappings between them, which we
explain next.

Software Product Line Engineering

18

Software Product Line
Engineering

18

20 2 A Development Process for Feature-Oriented Product Lines

Fig. 2.1 Overview of an engineering process for software product lines

In the past, software product lines have been developed for a wide variety of
domains, including operating systems, database systems, middleware, automotive
software, compilers, healthcare applications, and many more.

The broader the domain of a product line is the larger is the number of possible
stakeholders’ requirements that can be covered in the form of individually tailored
products. However, the broader the domain, the smaller is the set of similarities
among products. For example, the domain of system software is huge, which includes
operating systems, drivers, network software, database systems, and many more.
Although there are similarities that could be exploited in system software, individual
systems have substantial differences, which decrease potential for reuse. Focusing on
the (sub)domain of database systems or even embedded database systems, increases
the reuse potential, while keeping maintenance effort acceptable. The bottom-line is
that a proper scoping of the target domain is essential, as we discuss further in Sect.
2.2.1.

A development process for software product lines has to take these peculiarities
into account. Two issues play a crucial role: the explicit handling of variability and
the systematic reuse of implementation artifacts. For both, an appropriate structuring
of process and software artifacts is imperative.

The specific characteristics of software product lines lead to a separation between
domain engineering and application engineering and between problem space and
solution space. In Fig. 2.1, we illustrate a two-dimensional structure with four clusters
of tasks in product-line development and the mappings between them, which we
explain next.

Development for reuse
• Analyze domain & develop reusable

artifacts
• Does not result in a specific product
• Prepares artifacts to be used in

various products

Development with reuse
• Develop specific product for needs of

a particular customer
• Repeated for every derived product

Perspective of
stakeholders’
problems,
requirements,  
view on entire
domain

Perspective of
developers and
vendors

Software Product Line Engineering

19

Software Product Line
Engineering

18

20 2 A Development Process for Feature-Oriented Product Lines

Fig. 2.1 Overview of an engineering process for software product lines

In the past, software product lines have been developed for a wide variety of
domains, including operating systems, database systems, middleware, automotive
software, compilers, healthcare applications, and many more.

The broader the domain of a product line is the larger is the number of possible
stakeholders’ requirements that can be covered in the form of individually tailored
products. However, the broader the domain, the smaller is the set of similarities
among products. For example, the domain of system software is huge, which includes
operating systems, drivers, network software, database systems, and many more.
Although there are similarities that could be exploited in system software, individual
systems have substantial differences, which decrease potential for reuse. Focusing on
the (sub)domain of database systems or even embedded database systems, increases
the reuse potential, while keeping maintenance effort acceptable. The bottom-line is
that a proper scoping of the target domain is essential, as we discuss further in Sect.
2.2.1.

A development process for software product lines has to take these peculiarities
into account. Two issues play a crucial role: the explicit handling of variability and
the systematic reuse of implementation artifacts. For both, an appropriate structuring
of process and software artifacts is imperative.

The specific characteristics of software product lines lead to a separation between
domain engineering and application engineering and between problem space and
solution space. In Fig. 2.1, we illustrate a two-dimensional structure with four clusters
of tasks in product-line development and the mappings between them, which we
explain next.

Development for reuse
• Analyze domain & develop reusable

artifacts
• Does not result in a specific product
• Prepares artifacts to be used in

various products

Development with reuse
• Develop specific product for needs of

a particular customer
• Repeated for every derived product

Perspective of
stakeholders’
problems,
requirements,  
view on entire
domain

Perspective of
developers and
vendors

Domain Implementation

Product Derivation

Domain Analysis

Requirements Analysis

Domain Analysis

• Domain scoping 
Deciding on product line’s extent or range

• Domain modeling

• Captures & documents the commonalities &
variabilities of the scoped domain

• Often captured in a feature model

20

Domain Analysis

Feature Model

• Document the features of a product line & their
relationships

• Can be translated into propositional logic

21

Domain Analysis

Graph Library 
Feature Model

22

Domain Analysis

MST ⇒ Undirected ⋀ Weighted
Cycle ⇒ Directed

H
ie

ra
rc

hy
 C

on
st

ra
in

ts

Cross-tree  
Constraints

Optional Feature
Algorithm ⇒ Graph Library

Mandatory Feature
Edge Type ⇔ Graph Library

OR Group  
(at least one has to be selected)

XOR Group  
(exactly one has to be selected)

Graph Library

Edge Type Search Weighted

BFS DFSDirected Undirected Cyle Shortest Path MST Transpose

Prim Kruskal

Algorithm

MST = Minimum Spanning Tree

Hierarchal Relationships: Parent/child relationship - Child cannot be selected unless parent is selected

Graph Library 
Feature Model in Propositional Logic

23

Domain Analysis

MST ⇒ Undirected ⋀ Weighted
Cycle ⇒ Directed

 root(GraphLibrary)
∧ mandatory(GraphLibrary,EdgeType)
∧ optional(GraphLibrary,Search)
∧ optional(GraphLibrary,Weighted)
∧ or(Search,{BFS,DFS})
…
∧ alternative(MST,{Prim,Kruskal})
∧ (MST ⇒ Weighted) 

∧ (Cycle ⇒ Directed)
∧ (· · ·)

Graph Library

Edge Type Search Weighted

BFS DFSDirected Undirected Cyle Shortest Path MST Transpose

Prim Kruskal

Algorithm

Domain Implementation

• Underlying code must be variable

• Dimensions of implementation techniques

• Binding times: compile-time binding, load-time binding
and run-time binding.

• Representation: annotation vs composition

24

Domain Implementation

Domain Implementation
(Representation)

25

Domain Implementation

Graph Library

Edge Type Search Weighted

Graph Library

Edge Type Search Weighted

Annotation-based Approach Composition-based Approach

Variability Implementation

• Parameters

• Design patterns

• Build systems

• Preprocessors

• Feature-oriented programming

26

Domain Implementation

 - Parameters - binding time: runtime
 - Design Patterns - binding time: compile-time/run-time

Variability Implementation
Parameters

simple

flexible

language support

- code bloat

- computing overhead

- non-modular solution

27

Domain Implementation

annotation-based; binding time: run time

Variability Implementation
Design Patterns

well established

easy to communicate design decisions

- architecture overhead

- need to preplan extensions

28

Domain Implementation

composition; binding time: run time

Variability Implementation
Build Systems

simple if features can be mapped into files

can control other types of parameters

- code duplication if finer level of granularity needed

- hard to analyze

29

Domain Implementation

(Here, the build-script is extended to model the variability!)
annotation (in the build-script); binding time: compile time

Variability Implementation
Preprocessors

Easy to use, well-known

Compile-time customization removes unnecessary code

Supports arbitrary levels of granularity

- No separation of concerns (lots of scattering & tangling)

- Can be used in an undisciplined fashion

- Prone to simple (syntactic) errors

30

Domain Implementation

annotation; binding time: compile time

Variability Implementation
Feature-Oriented Programming

easy-to-use language mechanism, requiring minimal
language extensions

compile-time customization of source code

direct feature traceability from a feature to its
implementation

- requires composition tools

- granularity at level of methods

- only academic tools so far, little experience in practice
31

Domain Implementation

composition; binding time: compile time

Research Topics

• feature-model reengineering/extraction from existing
code

• detecting inconsistencies between the feature-model and
its “implementation”

• feature interactions - intended vs. unintended?

32

composition; binding time: compile time

33

A Software Product Line for Static Analyses
The OPAL Framework

Michael Eichberg Ben Hermann
Technische Universität Darmstadt
{lastname}@cs.tu-darmstadt.de

Abstract
Implementations of static analyses are usually tailored toward a
single goal to be efficient, hampering reusability and adaptability of
the components of an analysis. To solve these issues, we propose to
implement static analyses as highly-configurable software product
lines (SPLs). Furthermore, we also discuss an implementation of
an SPL for static analyses – called OPAL – that uses advanced
language features offered by the Scala programming language to
get an easily adaptable and (type-)safe software product line.

OPAL is a general purpose library for static analysis of Java
Bytecode that is already successfully used. We present OPAL and
show how a design based on software produce line engineering
benefits the implementation of static analyses with the framework.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis

General Terms Design, Languages, Program analysis

Keywords Static analysis, Design, Software Product Line Engi-
neering, Abstract Interpretation

1. Introduction
When designing static analyses we aim for efficiency and scalabil-
ity so that the analyses can tackle reasonable and therefore interest-
ing problems. In order to achieve these design goals static analyses
are usually tailored toward solving a single, specific set of problems
and therefore often lack generality and reusability. In order to foster
reusability and make specific analyses usable in a broader context,
static analyses need to be more adaptable and require better support
for variability without sacrificing performance.

A well-known approach to address variability in a managed
fashion is software product line engineering (SPLE). We propose
to design and implement static analysis frameworks as product
lines in order to foster reuse of analysis components and allow for
tailored but generally useful analyses.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOAP ’14, June 12th, 2014, Edinburgh, UK.
Copyright c� 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

In this paper we present OPAL, a framework for the static anal-
ysis of Java Bytecode which implements a software product line
for the systematic creation of tailored static analyses. OPAL was
designed to satisfy both fundamental requirements: (1) easy cus-
tomizability and reusability as well as (2) performance and scal-
ability. It uses state-of-the-art programming language abstraction
from Scala to foster the development of new static analyses.

The OPAL Framework currently offers two variation points
where analyses can be configured to specific requirements. First,
the representation of Bytecode can be configured to the exact needs
of the analysis in order to save resources and to support tools that
have different requirements on the basic representation. Second,
OPAL can be configured to run basic analyses in order to help
higher-level static analyses by means of abstract interpretation.

The contributions of this paper are:

• An approach for designing static analysis frameworks based on
software product line engineering.

• OPAL, a reference implementation for this design approach,
which supports multiple representations for Java Bytecode as
well as the configuration and adaptation of the performed static
analyses to the needs of some user-developed higher-level static
analysis.

The remainder of this paper is structured as follows. Motivat-
ing our work, we extend on related work in Section 2. In Section
3, we present a short introduction into software product line engi-
neering. We provide a short introduction into the OPAL framework
in Section 4. After that, we discuss OPAL’s design w.r.t. its sup-
port for software product lines. The section ends with a discussion
how it can be used to develop specifically tailored static analyses.
In Section 6, we show an example where OPAL has already proven
beneficial for the implementation of an analysis. We conclude the
work in Section 7 with a summary and ideas for possible future
work.

2. Related Work
In general, the idea of developing single, basic static analyses such
that they are (re)usable is commonplace. But systematic reusabil-
ity and composability of basic static analyses with well-/formally
defined extension and variation points is not regularly addressed.
An example of a step in that direction is, for example, the work on
the generic framework for call graph algorithms done by Grove et
al.[15]. They developed a framework that makes it possible to sys-
tematically configure the call graph construction algorithm. How-
ever, the primary purpose of that framework was to compare differ-
ent call graph algorithms and not to provide a foundation for other
developers of static analyses.

A second example of a framework that is related to our work
is Julia developed by Fausto Spotto et al.[13]. This framework for

Case Study

Michael Eichberg and Ben Hermann
SOAP'14; Proceedings of the 3rd ACM SIGPLAN International Workshop on the State of the Art in Java
Program Analysis
ACM 2014

A Software Product Line for  
Static Analyses
• Commonalities

• we need to be able to process .class files

• Variability
• enable different representation for .class files  

(e.g., if you want to write a disassembler a 1:1
representation is needed; for most static analyses a
more abstract representation is required.)

• only reify those parts that are needed

34

Case Study

Requirement: composition based approach

binding time: compile-time

Processing Java  
.class Files

35

AttributesReaderConstantPoolReader

CodeAttributeReader

Class File Representation

MethodsReaderClassFileReader

ConstantPoolBinding UnknownAttributeReader

SkipUnknownAttributeReader UnknownAttributeReader

resolved.MethodsBinding native.MethodsBinding

...

...

implies

Case Study

Processing Java.class Files

36

Base Trait which defines the general infrastructure.

Case Study

trait ClassFileReader{ 
 /* Abstract over the representation of the ... */  
 type ClassFile  
 type Constant_Pool  
 type Fields 
 type Methods 
 type Attributes  
 ... 
 /* Methods to read in the respective data structures. */  
 def Constant_Pool(in: DataInputStream): Constant_Pool  
 def Fields(in: DataInputStream, cp: Constant_Pool): Fields 
 def Methods(in: DataInputStream, cp: Constant_Pool): Methods  
 ... 
 /* Factory method to create a representation of a Class File. */  
 def ClassFile( 
 ... // Version information, defined type, etc. 
 fields: Fields, 
 methods: Methods, 
 attributes: Attributes)(implicit cp: Constant_Pool): ClassFile  
  
 def ClassFile(in: DataInputStream): ClassFile = { 
 // read magic and version information  
 val cp = Constant_Pool(in)  
 val fields = Fields(in,cp) 
 val methods = Methods(in,cp) 
 val attributes = Attributes(in,cp) 
 // call factory method  
 ClassFile(...,fields,methods,attributes)(cp)  
 } 
}

AttributesReaderConstantPoolReader

CodeAttributeReader

Class File Representation

MethodsReaderClassFileReader

ConstantPoolBinding UnknownAttributeReader

SkipUnknownAttributeReader UnknownAttributeReader

resolved.MethodsBinding native.MethodsBinding

...

...

implies

Processing Java.class Files

37

Trait which implements the MethodsReader feature!

Case Study

trait MethodsBinding extends MethodsReader { 
 this: ConstantPoolBinding with AttributeBinding => 
 
 type Method_Info = de.tud.cs.st.bat.resolved.Method 
 def Method_Info( 
 accessFlags: Int,  
 name: Int,
 descriptor: Int, 
 attributes: Attributes 
)(implicit cp: Constant_Pool): Method_Info =  
 create Method representation  
}

AttributesReaderConstantPoolReader

CodeAttributeReader

Class File Representation

MethodsReaderClassFileReader

ConstantPoolBinding UnknownAttributeReader

SkipUnknownAttributeReader UnknownAttributeReader

resolved.MethodsBinding native.MethodsBinding

...

...

implies

reified cross-tree constraint

Processing Java.class Files

38

Product configurations

Case Study

AttributesReaderConstantPoolReader

CodeAttributeReader

Class File Representation

MethodsReaderClassFileReader

ConstantPoolBinding UnknownAttributeReader

SkipUnknownAttributeReader UnknownAttributeReader

resolved.MethodsBinding native.MethodsBinding

...

...

implies

class Java7ClassFilesPublicInterface  
 extends ClassFileBinding  
 with ConstantPoolBinding  
 with FieldsBinding  
 with MethodsBinding  
 with AttributesReader 
 with SkipUnknown_attributeReader 
 with AnnotationsBinding  
 with InnerClasses_attributeBinding  
 with InterfacesBinding  
 // further attributes related to a class' public interface

class Java7ClassFiles  
 extends Java7ClassFilesPublicInterface  
 with CodeAttributeBinding  
 with StackMapTable_attributeBinding  
 with LineNumberTable_attributeBinding  
 with LocalVariableTable_attributeBinding  
 with BootstrapMethods_attributeBinding  
 // further code related attributes

Analyzing Methods
(Implemented using a second product line; which
supports several products of the first product line.)

39

Case Study

specialized
 handling for

 certain
values

StringValues ClassValues

FloatValuesReferenceValues

...

Abstract Interpretation Domain

IntegerValues

TypeLevel TypeLevel MultipleOrigins TypeLevel Signed

...InvokeInstructionFieldAccessInstruction

additional
handling

for invoke
instructions

RecordValues user defined

40

Component Composition Using Feature Models

Michael Eichberg1, Karl Klose2, Ralf Mitschke1, and Mira Mezini1

1 Technische Universität Darmstadt, Germany
{eichberg, mitschke, mezini}@st.informatik.tu-darmstadt.de

2 Aarhus University, Denmark
klose@cs.au.dk

Abstract. In general, components provide and require services and two
components are bound if the first component provides a service required
by the second component. However, certain variability in services – w.r.t.
how and which functionality is provided or required – cannot be described
using standard interface description languages. If this variability is rel-
evant when selecting a matching component then human interaction is
required to decide which components can be bound. We propose to use
feature models for making this variability explicit and (re-)enabling au-
tomatic component binding. In our approach, feature models are one
part of service specifications. This enables to declaratively specify which
service variant is provided by a component. By referring to a service’s
variation points, a component that requires a specific service can list
the requirements on the desired variant. Using these specifications, a
component environment can then determine if a binding of the compo-
nents exists that satisfies all requirements. The prototypical environment
Columbus demonstrates the feasibility of the approach.

1 Introduction

Components in a component-based system may provide and require multiple
services, whereby each service is described by a service specification. A com-
ponent that provides a specific service declares to do so by implementing the
interface defined by the service specification. This approach of “programming
against interfaces” enables low coupling and flexible designs that are malleable.

Current interface description languages (Java interfaces, WSDL interfaces,
etc.) are geared towards describing commonalities between components and hid-
ing their variabilities. However, in an open component environment, several com-
ponents may co-exist that do implement the same programmatic interface, but
with varying characteristics of their implementations regarding functional as well
as non-functional properties. For example, it is possible that two components im-
plementing two Payment Web Services expose exactly the same programmatic
interface, but do support a di↵erent set of credit card vendors, use di↵erent se-
curity algorithms and have di↵erent levels of reliability. The description of the
interface using, e.g., the Web Service Description Language (WSDL), only spec-
ifies how to interact with a web service; i.e., the data types that have to be used,
the order in which the messages have to be exchanged, the transport protocol

Michael Eichberg, Karl Klose, Ralf Mitschke and Mira Mezini
13th International Symposium on Component Based Software Engineering
Springer; 2010

