
Exercise 10: Smart Home

Software Engineering Design & Construction
WS 2016/17 - Dr. Michael Eichberg, M.Sc. Matthias Eichholz

This exercise will be graded. Please submit your solution until the 6th of February, 23:59 via email to eichholz@st.
informatik.tu-darmstadt.de. Make sure you zip your complete sbt project and make sure that it works out of the box
by running sbt run and sbt test. Your attachment for the submission must adhere to the following naming scheme:
ex10_LASTNAME_FIRSTNAME_MATRICULATIONNUMBER.zip. Every student must submit an individual solution, group
submissions won’t be accepted.
Support can be found in the office hours of our tutors and in the forum at https://www.fachschaft.informatik.
tu-darmstadt.de/forum/viewforum.php?f=234.

Introduction

The goal of this exercise is to implement a simple simulation of a smart home. In a smart home, multiple sensors and
actuators are deployed in each room. Sensors are responsible for sensing the environment. They can provide information
about the ambient temperature, air humidity, fraction of pollutants in the air, number of persons in a room and many
more. Actuators translate the signals provided by sensors into different actions. For example, the detection of motion
can trigger a light being turned on an increased air humidity can adapt the ventilation.
This exercise combines different topics covered in the lecture, like path-dependent types, stackable traits and reactive
programming1. In order to keep the domain logic simple, especially for the sensors, we will simulate sensor inputs by
using UI controls. We use ScalaFX2 for the user interface, which is a Scala library sitting on top of JavaFX. In case you
are working on Linux, it might be necessary to additionally install the respective JavaFX package for your distribution.
In the project template you find several base traits on which your implementation should build on. Do not change the
signatures of traits we already provide, except when stated otherwise.

trait Building {

trait TLocation

type Location <: TLocation

trait TRoom extends TLocation

type Room <: TRoom with Location

trait CompositeLocation[L <: Location] extends TLocation {
def locations: Seq[L]

}

trait THouse extends CompositeLocation[Room]

type House <: THouse with Location

def buildHouse(clock: Clock): House
}

The Building trait serves as a foundation for implementing various kinds of buildings. It is a slightly adapted version
of the code from the lecture slides, so you should already be familiar with the code. A house only consists of multiple
rooms, but it does not contain multiple floors in our case.

1 http://www.rescala-lang.com
2 http://www.scalafx.org

1

eichholz@st.informatik.tu-darmstadt.de
eichholz@st.informatik.tu-darmstadt.de
https://www.fachschaft.informatik.tu-darmstadt.de/forum/viewforum.php?f=234
https://www.fachschaft.informatik.tu-darmstadt.de/forum/viewforum.php?f=234
http://www.rescala-lang.com
http://www.scalafx.org


trait Sensor[T] {
val value: Signal[T]

}

In our implementation Sensors can provide measurements of different data types. For example, a temperature sensor
could provide the measured temperature as a Double, while a motion detector uses Boolean to indicate whether there is
any motion sensed or not. We use a signal to model sensor readings as a continuous value.

trait Actuator {}

The Actuator trait should be used as basis for all of your actuator implementations.

Task 1 Clock 1P

Actions carried out by actuators might be time-dependent. For example, on weekdays we might want to turn the heating
down during the day and automatically turn it up again before people return from work. Our smart home therefore
needs a central clock. Complete the class Clock and model seconds, minutes, hours, days and the current time of the day
in seconds since midnight using signals.
Hint: You can use the method Signal.changedTo(value) which gives you an event that fires as soon as the signal value
changes to the value provided as parameter and the method Event.count to count the occurrences of an event.

Task 2 Buildings 4.5P

The goal of this task is to create a reusable class hierarchy to implement different kinds of Smart Homes and to create a
very simple graphical user interface for our Smart Home. Since we want to adhere to the Single Responsibility Principle,
we need to separate these two aspects in our implementation.

Task 2.1 Smart Home 1.5P

As the first step, create a new trait SmartHome that extends the Building trait and allows us to add a sequence of sensors
and actuators to each room and we also want to give names to rooms, like “Living Room” or “Bed Room”. It should also
be possible to get a sequence of all sensors and actuators respectively from all rooms together.

Task 2.2 Rendering the GUI 3P

Next, create a trait DrawableSmartHome that adds a render method to each location. Since we are using ScalaFX, the
render method should return a scalafx.scene.Node, which allows us to process the rendering result further.

def render(): scalafx.scene.Node

Rendering rooms
A renderable room must provide at least the following properties: a width, a height and its position. For each room we
want to render a rectangle with the provided width and height. Inside of this rectangle we want to put a label displaying
the name of the room and at a later point of time we want to render all sensors and actuators installed in the room.
Hint: You can use a scalafx.scene.layout.StackPane3 to display UI controls on top of each other. A
scalafx.scene.layout.VBox4 can be used to lay out controls in a single vertical column.

Rendering the house
Figure 1 shows an example of how the UI for a house might look like. At the top, we want to display the current time in
the format “Day Hours:Minutes:Seconds”, e.g. Tuesday, 09:50:00. Create a new signal (Signal[String]) that returns the
formatted time and use a label to display the current time in the UI. We then want to display the rooms below the label
containing the current time.
Hint: You can use a scalafx.scene.layout.AnchorPane5 to draw the rooms at their respective positions. To do so, have
also a look at the methods AnchorPane.setTopAnchor and AnchorPane.setLeftAnchor.

3 https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/StackPane.html
4 https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/VBox.html
5 https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/AnchorPane.html

2

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/StackPane.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/VBox.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/AnchorPane.html


Figure 1: Example of how the final UI might look like

Task 3 Sensors 3P

In this task we want to implement a set of different sensors for our smart home. Since we also want to display the
sensors in the UI, start by creating a new trait DrawableSensor that extends the provided trait Sensor and adds a ren-
der method def render(): scalafx.scene.Node. For the following concrete sensor implementations, you can directly
inherit from DrawableSensor. Make sure that only subtypes DrawableSensor can be added to the list of sensors of a
DrawableSmartHome. Hint: This can be achieved by using abstract types.

Task 3.1 Smoke Detector 1P

Implement a simple smoke detector that just tells us whether smoke is detected or not. Render a CheckBox6 in the UI.
When the CheckBox is selected, the sensor value should be true, otherwise false.
Hint: JavaFX/ScalaFX UI controls use so-called properties to represent their internal state. For example, if you want
to check, whether a CheckBox is checked, you can use CheckBox.selected which returns a BooleanProperty. In the
template you can find an implicit conversion from a ScalaFX property to a REScala signal, which can be used as follows:

import JFXAdapter._
val checkbox = new CheckBox()
val value: Signal[Boolean] = checkbox.selected.toSignal

Alternatively, you can register an onChange listener on a property to get notified when the value of a property changes.
More information about properties in ScalaFX can be found at http://www.scalafx.org/docs/properties.

Task 3.2 Temperature Sensor 1P

Next, implement a temperature sensor that returns the current temperature as a double value. Render a Slider7, ranging
from 0.0 to 30.0 in the UI and connect the slider value to the signal representing the sensor value.

Task 3.3 Motion Detector 1P

Finally, implement a motion detector, which indicates the position as a tuple of doubles (Double, Double) at which it
last detected motion. We want to simulate motion by moving the mouse over an area. Add a rectangle to the UI and use
the onMouseMoved event handler to get the position where the mouse moved last.

6 https://docs.oracle.com/javase/8/javafx/api/javafx/scene/control/CheckBox.html
7 https://docs.oracle.com/javase/8/javafx/api/javafx/scene/control/Slider.html

3

http://www.scalafx.org/docs/properties
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/control/CheckBox.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/control/Slider.html


Task 4 Actuators 1.5P

Similar to the sensors implementation, start by creating a DrawableActuator that provides a render method. Also,
make sure that a DrawableSmartHome only accepts subtypes of DrawableActuator to be added to the list of actuators.
Implement three different actuators, Light, Siren and Heater. For each actuator, by default a white rectangle with a
label containing the text “Off” should be rendered in the UI. When the actuators are turned on, the label should contain
the text “On” and the fill color of the rectangle should turn yellow, red, and blue for the three actuators respectively.

Task 5 Building the House 2P

Create a class SimulatedSmartHome that extends your DrawableSmartHome trait and that can be used to build a house
consisting of at least a kitchen, a bath room, a living room and two bed rooms. The rendered version of this house should
look similar to Figure 1. The following sensors and actuators should be installed in the individual rooms:

Room Sensors Actuators
Kitchen Motion Detector Light, Siren
Bath Room Motion Detector Siren
Living Room Smoke Detector, 2x Temperature Sensor, 2x Motion Detector 2x Light, Siren, Heater
Bed Room Smoke Detector, Temperature Sensor Siren, Heater

Task 6 Connecting Sensors and Actuators 6P

So far, we are able to install sensors and actuators in our SmartHome, but no connection exists between these two. We
therefore want to implement various policies that determine how actuators behave in response to sensor data. We want
to be able to reuse these policies for different smart home implementations by using mixin-composition. The following
code snippet shows how this composition might look like.

class MySmartHome extends SimulatedSmartHome with FireAlarm with Lights

Task 6.1 Fire alarm 1P

Create a trait FireAlarm that connects smoke detectors and sirens. Whenever any smoke detector in the house detects
smoke, all available sirens in the house should be activated.

Task 6.2 Motion-controlled Lights 3P

Create a trait Lights that connects the motion detectors to the lights. Whenever any motion detector in a room detects
motion, we want to turn on all available lights in the same room. Since it is usually not necessary to turn the lights on
during the day, the automatic control of lights should only be enabled in the evening between 6pm and 11pm.
Hint: Our motion detectors only report the position where they have sensed any motion last. However, they do not tell
us when motion has been detected. We can solve this issue by using timeouts. You can use the method Signal.changed
to create an event that is fired when the motion detector reports a new position and indicates that motion has been
detected. When the event is fired the first time, create a timer with a delay of 100ms that indicates that there is no
motion anymore. Reset the timer whenever motion is detected before the timer action has been executed.

Task 6.3 Heating 2P

Create a trait Heating for controlling the temperature in the house. In general a room’s heater should turn on, if the
average temperature per room drops below 20 degree Celsius. However, you don’t want to heat the house when nobody
is at home. On weekdays you want to heat the rooms in the time from 5am to 8am and from 4pm to 10:30pm. On the
weekend you want to keep the temperature at 20 degree Celsius from 7am to 11pm. In the remaining time of the day
you just want to ensure that the room temperature never drops below 15 degree Celsius.

Task 7 SOLID 2P

Discuss shortly, the connection between the Single Responsibility Principle (SRP) and Signals/Events. Discuss it in
relation to the smart home example.

4


	Clock 1P
	Buildings 4.5P
	Smart Home 1.5P
	Rendering the GUI 3P

	Sensors 3P
	Smoke Detector 1P
	Temperature Sensor 1P
	Motion Detector 1P

	Actuators 1.5P
	Building the House 2P
	Connecting Sensors and Actuators 6P
	Fire alarm 1P
	Motion-controlled Lights 3P
	Heating 2P

	SOLID 2P

