
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Introduction - Software Engineering

Winter Semester 17/18

Software Engineering Timeline

2

Impressions from the NATO Software Engineering Conferences

E. Dijkstra, 1972

[The major cause of the software crisis is] that
the machines have become several orders of
magnitude more powerful! To put it quite
bluntly: as long as there were no machines,
programming was no problem at all; when we
had a few weak computers, programming
became a mild problem, and now we have
gigantic computers, programming has become an
equally gigantic problem.

3

Definition of Software Engineering

• Carnegie Mellon University's Software Engineering
Institute (SEI) defines “Software Engineering” relative to
“Engineering” as:

• Engineering is the systematic application of scientific
knowledge in creating and building cost-effective
solutions to practical problems in the service of
mankind.

• Software engineering is that form of engineering that
applies the principles of computer science and
mathematics to achieving cost-effective solutions to
software problems.

4

E. Dijkstra, 1972

But, as Dijkstra already identified
[...] I would like to insert a warning to those who
identify the difficulty of the programming task with
the struggle against the inadequacies of our current
tools, because they might conclude that, once our
tools will be much more adequate, programming will
no longer be a problem.

Programming will remain very difficult, because
once we have freed ourselves from the circumstantial
cumbersomeness, we will find our selves free to
tackle the problems that are now well beyond our
programming capacity.

5

“…struggle against the inadequacies of our current tools…”

http://imgs.xkcd.com/comics/exploits_of_a_mom.png

6

http://imgs.xkcd.com/comics/exploits_of_a_mom.png

2477
Vulnerabilities due to buffer errors (2013-2015)  

National Vulnerability Database, hKp://nvd.nist.gov

On the State of Software Engineering

2230
Vulnerabilities due to cross-site scripting (2013-2015)  

National Vulnerability Database, hKp://nvd.nist.gov

On the State of Software Engineering

2230
Vulnerabilities due to permissions, privileges and access control

(2013-2015) 

National Vulnerability Database, hKp://nvd.nist.gov

On the State of Software Engineering

1769
Vulnerabilities due to cryptographic issues (2013-2015)  

National Vulnerability Database, hKp://nvd.nist.gov

On the State of Software Engineering

These issues were first described in…
• 1972 - Buffer overflow used in a kernel  

Computer Security Technology Planning Study, 1972

• 1988 - Buffer overflow used in the Morris worm

• 1998 - SQL injection explained in the literature  
Phrack Magazine, 8(54), article 8

• 2000 - Cross-site scripting exploits 
CERT “Malicious HTML Tags”, 2000

11

Product Engineering

12

Software as an Engineering Product?

• 1st Phase: Requirements Analysis  
The problem to solve is analyzed and documented.

• 2nd Phase: Design and Validation  
Engineers translate the requirements into a detailed
description of the solution using models and rigorously
validate these models.

• 3rd Phase: Building the Product  
Workers build the design using appropriate tools and
materials.

Software as an Engineering Product?
Hardware vs. Software Design

13

Hardware Design Software Design

Product is a physical object Product is the running software

Building the product is:
• done by humans and robots
• expensive
• slow
• hard to redo

Building the product is:
• done by compilers and linkers
• extremely cheap
• very fast
• easy to redo

Precise quality measures No precise quality measures

Development of Eclipse

14

• Code as Design: Three Essays by Jack W. Reeves 
http://www.developerdotstar.com/mag/articles/reeves_design_main.html 
The following essays offer three perspectives on a single theme, namely that
programming is fundamentally a design activity and that the only final and true
representation of "the design" is the source code itself. [...]

• What Is Software Design? 
http://www.developerdotstar.com/mag/articles/reeves_design.html 
This essay was first published in the Fall 1992 issue of the C++ Journal. [...] in recent
years the essay has entered the flow of ideas and discussion in the software development
community at large [...].

• What Is Software Design: 13 Years Later 
http://www.developerdotstar.com/mag/articles/reeves_13yearslater.html 
In this essay the author responds to the most common arguments he has encountered. He
also considers certain ideas from the original essay in light of more current trends and
techniques.

• Letter to the Editor  
http://www.developerdotstar.com/mag/articles/reeves_originalletter.html 
This is the original letter written by Jack W. Reeves to C++ Journal. It stands as a
rewarding essay in its own right, giving first written expression to the themes and ideas
found in "What is Software Design?" In some aspects it is even more comprehensive and
spirited than the essay it inspired.

15

http://www.developerdotstar.com/mag/articles/reeves_design_main.html
http://www.developerdotstar.com/mag/articles/reeves_design.html
http://www.developerdotstar.com/mag/articles/reeves_13yearslater.html
http://www.developerdotstar.com/mag/articles/reeves_originalletter.html

NATO Software Engineering Conference 1968
• [...] there is no essential difference between design and

production, since the production will include decisions which
will influence the performance of the software system, and
thus properly belong in the design phase. 
Peter Naur

• […] Honestly, I cannot see how these activities allow a rigid
separation if we are going to do a decent job.  
Edsger Dijkstra

16

Back in the 1960s, writing the source code was considered to be the "production
step".

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/

Questionable Ideas

17

Grounded on Misleading Analogies

Waterfall Model
Software Industrialization

Programmer productivity as "Lines of Code"

Outsourcing: Design here, Production elsewhere

Consequences of the
Cheap Software Build?

18

In Software Development
Complexity and Change

are Invariants!

19

In Software Development Complexity and Change are Invariants!

20

Designing for organizing complexity
and facilitating change

is the key to support maintainability.

Incomplete and Changing Requirements

• How do we get complete requirements?

• Can we get complete requirements at all?

21

What is the right question to ask?

Incomplete and Changing Requirements

• Scenario: 
You are developing a software for personnel
management that advices employees about their
benefits, including their retirement plan.

• Initial Requirement: 
The first opportunity to withdraw money without penalty is
when an employee turns 60.

• Resulting Code: 
if(employee.age >= 60) {...}

22 Doe
s t

his
 re

fle
ct

the
 re

alit
y?

Incomplete and Changing Requirements

• Scenario: (as previously shown)

• Initial Requirement: (as previously shown)

• Resulting Code: 
if(employee.age >= 60) {…}

• Changed Requirement: 
After testing it is discovered that withdrawing money is possible when the
employee is 59.5.

• Customer's Assessment: This change will be easy to do...

• But, the following change may not be possible: 
if(employee.age >= 59.5) {...}

23 Doe
s t

his
 re

fle
ct

the
 re

alit
y?

Incomplete and Changing Requirements

• Scenario: (as previously shown)

• Initial Requirement: (as previously shown)

• Resulting Code: 
if(employee.age >= 60) {…}

• Changed Requirement: 
After testing it is discovered that withdrawing money is possible when the
employee is 59.5.

• Customer's Assessment: This change will be easy to do...

• But, the following change may not be possible: 
if(employee.age >= 59.5) {...}

24 Doe
s t

his
 re

fle
ct

the
 re

alit
y?

The task of the software development team is to engineer the illusion of simplicity. in G. Booch: Object-oriented Analysis with Applications, Addison-Wesley, 1993

Everything is Part of the Design

1. High-level architectural design

2. Class-level design

3. Low(implementation)-level detailed design

4. The code

25

Testing and Debugging
is Designing

26

Testing is not just concerned with
getting the current design correct,

it is part of refining the design.

27

Analyzing software requirements errors in safety-critical, embedded
systems; R. R. Lutz; 1993

In [...] embedded systems [...] the software
requirements change throughout the software
development process, even during system testing.
This is largely due to unanticipated behavior,
dynamic changes in the operating environment, and
complex software/hardware and software/software
interactions in the systems being developed.
Controlling requirement changes (and, hence, the
scope and cost of development) is difficult since the
changes are often prompted by an improved
understanding of the software’s necessary interfaces
with the physical components [...] in which it is
embedded.

28

Auxiliary Documentation

• Auxiliary documentation should capture information from
the problem space.

• Auxiliary documentation should document those aspects
of the design that are difficult to extract directly from the
design itself.

• But, keeping auxiliary documentation up to date manually
is difficult.

29

"Up-to-Date" Auxiliary
Documentation

30

package org.eclipse.emf.teneo.hibernate.resource;
...
 /**
 * Rolls back the transaction if any and clears different lists to
 * start with an empty resource again.
 * Note that the super.doUnload is not called because that clears
 * the list resulting in all kinds of undesirable inverse removes.
 */
 @Override
 protected void doUnload() {
 super.doUnload();
 }
...

TO CODE IS TO
DESIGN.

31

Which doesn't mean that you should start coding right away!

Properties of a good development
process
• … recognizes programming as a design activity and does

not hesitate to code when coding makes sense.

• … recognizes testing and debugging as design activities -
the software equivalent of design validation and refinement
of other engineering disciplines - and does not shorten the
steps.

• … recognizes that there are other design activities: top
level design, module design, class design, etc.

• … recognizes that all design activities interact and allows
the design to change as various steps reveal the need.

32

If to code is to design, then
Programming Languages

are
Design Languages!

33

Which doesn't mean that you should start coding right away!

We need a unified design notation
suitable for all levels of design, i.e.,
programming languages that are

suitable for capturing high-level design.

34

Making Code Look Like Design

35

Functional Object-oriented Programming

Object-oriented
Programming

Functional
Programming

Structured Programming

Modular Programming

Assembler-like Languages

Advances in programming language
technology are driven by the need to make
programming languages capable of more

directly capturing higher-level designs!

36

Takeaway

• Designing means structuring code in modular way so as
to support managing complexity and continuous change.

• We will adopt an agile design process to accommodate
change in the design process.

• We will adopt test-driven development, as we consider
testing to be part of design.

• Languages as design notations will be in focus but also
design principles and styles as well as tools for
expressing modular structures outside the languages.

37

Consequences of the cheap build for this course

