
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Programming Languages and Design Principles

Winter Semester 17/18

In the following, we will discuss the development of programming languages as a means to improve
their ability to capture the software design at ever increasing abstraction levels. Or, from another point
of view, we discuss why advances in programming language technology are driven by the need to
make programming languages capable of capturing higher-level designs.

Making Code Look
Like Design

2

“Designing” with Pseudo-Assembler

3

What does the following program do?

i = 1
TEST: if i < 4

then goto BODY
else goto END

BODY: print i
i = i + 1
goto TEST

END:

“Designing” with Pseudo-Assembler

4

What does the following program do?

i = 1
LOOP: print i

i = i + 1
if i < 4 goto LOOP

END:

Though both programs just print out "123" the second one is easier to read and comprehend. It has a
better style:

• Clear structure

• No crossing gotos

• Better names

• Code structure closer to what we want to express.  

"Print out i, i smaller than 4“

Hence, the second variant, though functionally identical, is easier to understand, debug, change.

Style can only be
recommended, not

enforced!

5

Enforcing a specific style is always very laborious and (without proper tool support) most often fails
for large(r) (distributed) groups.

Designing with Structured Programming Languages

6

What does the following program do?

i = 1
while (i < 4) {

print(i)
i = i + 1

}

Style
 gets

 en
for

ce
d!

In the 1960th programming language support for better structuring of code emerged. `Goto`s were
replaced by loops (`while`) and conditionals (`if`/`else`). Furthermore, procedures were introduced to
support user-defined abstractions.

New words, new grammars, new abstractions enable developers to directly express looping/
conditional computations, instead of emulating them by jumps. Using a – by then – modern
structured programming language, it was no longer possible to write crossing `goto`s!

Better languages, More challenging tasks…

7

A simple image browser with structured programming

Code for Image Browser Structured into Procedures

8

Try to identify which method calls which method!

main () {
draw_label(“Art Browser”)
 m = radio_menu(
 {“Whale”, “Eagle”,
 “Dogfish”})
 q = button_menu({“Quit”})
 while (!check_buttons(q)) {
 n = check_buttons(m)
 draw_image(n)
 }
}

set_x (x) {
 current_x = x
}

draw_circle (x, y, r) {
 %%primitive_oval(x, y, 1, r)
}

set_y (y) {
 current_y = y
}

radio_menu(labels) {
 i = 0
 while (i < labels.size) {
 radio_button(i)
 draw_label(labels[i])
 set_y(get_y()
 + RADIO_BUTTON_H)
 i++
 }
}

radio_button (n) {
 draw_circle(get_x(),
 get_y(), 3)
}

get_x () {
 return current_x
}

get_y () {
 return current_y
}

draw_image (img) {
 w = img.width
 h = img.height
 do (r = 0; r < h; r++)
 do (c = 0; c < w; c++)
 WINDOW[r][c] = img[r][c]
}

button_menu(labels) {
 i = 0
 while (i < labels.size) {
 draw_label(labels[i])
 set_y(get_y()
 + BUTTON_H)
 i++
 }
}

draw_label (string) {
 w = calculate_width(string)
 print(string, WINDOW_PORT)
 set_x(get_x() + w)
}

In this case, the code is structured, but the procedures are not! It is hard, if not nearly impossible, to
maintain or even extend this code.

Structured Programming
with Style

gui_radio_button(n)

gui_button_menu(labels)

gui_radio_menu(labels)

graphic_draw_image (img)

graphic_draw_circle (x, y, r)

graphic_draw_label (string)

state_set_y (y)

state_get_y ()

state_set_x (x)

state_get_x ()

main()

Group procedures by the functionality they implement and the state they access, e.g. by naming
conventions …

Advantages:

• The code is closer to what we want to express.  
"main calls gui, gui calls graphic to draw, …“

• The code is easier to understand, debug and change.

Abstraction mechanisms
enable us to code and
design simultaneously!

10

"Write what you mean."

• Makes the code easier to understand, debug and change.

• Allows structured organization of code.

• Ability to ignore details. 

Makes the code closer to what we want to express.

Let’s “develop” application families with sophisticated GUIs with
uniform look and feel with structured/modular programming…

11

Modeling variability with modular programming languages appeared complex…

Designing with Object-Oriented Programming Languages

• classes

• inheritance

• subtype polymorphism

• virtual methods

12

Object-oriented programming languages introduce new
abstraction mechanisms:

(Still)
 Dom

ina
tin

g

Prog
ram

ming
 Para

digm

The roots of object-oriented programming languages are in the
sixties.

13

Allan Kay,
Smalltalk 70 - 80

Dahl and Nygaard,
Simula 64, 68

• Object-oriented languages are popular because they make it easier to design software and
program at the same time.

• They allow us to more directly express high level information about design components
abstracting over differences of their variants.

• Make it easier to produce the design, and easier to refine it later.

• With stronger type checking, they also help the process of detecting design errors.
• Result in a more robust design, in essence a better engineered design.

Programming Languages are not a Panacea

14

• Accessibility of object-oriented programming drives more complex designs!

• Programming languages are powerful tools, but cannot and will never guarantee good designs.

• Programming always needs to be done properly to result in good code.

• Human creativity remains the main factor.

–Einstein

"The significant problems we face cannot be solved
at the same level of thinking we were at when we
created them."

15

E.g., trying to fix security problems in programs written in language X which are (conceptually) due to
the design of language X is not going to work.

Another example are issues related to memory access, such as out-of memory issues, access
violations or buffer overflows are to a great extend solved by avoiding/hiding pointers and by
introducing automatic garbage collection etc.

–Jack Reeves, To Code is to Design, C++ Report 1992

 […] improvements in programming techniques
and programming languages in particular are
overwhelmingly more important than anything else
in the software business […]

[…] programmers are interested in design […]
when more expressive programming languages
become available, software developers will adopt
them.

16

Designing with Functional, Object-Oriented Programming
Languages

17

class Person(id : Int)

val in : java.util.ObjectIntputStream = …
val n/*count*/ = in.read() // the number of stored objects
scala.Array.fill(n){ in.readObject() }

=> Array[Person] = Array(Person(0), …, Person(14))

Result:

Code:

Read the next n objects from an ObjectInputStream.

By fusing object-oriented and functional programming we are provided with further means to raise
our abstraction level. This enables us to better express our intention.

Design Challenge:  
Getting rid of Global State

18

import java.util.HashMap;

public class GlobalState {
 public static Object theMutex; // = ...
 public static HashMap<Object,Object> theCache; // = ...
}

class Main {
 public static void init() {
 synchronized(GlobalState.theMutex) {
 GlobalState.theCache.put("year",new Integer(2017));
 printIt()
 }
 }

 public static void printIt() {
 System.out.println(GlobalState.stateToString());
 }

 public static void main(String[] args) {
 GlobalState.theMutex = new Object();
 GlobalState.theCache = new HashMap<>();

 init();
 doIt();
 }
}

Typical - screwed up - design!

Code which makes use of Global State is generally hard(er) to comprehend and often (much) hard(er)
to test! Try to avoid global state whenever possible!

Design Challenge:  
Getting rid of Global State

19

import java.util.HashMap;

public class TheState {
 public Object theMutex; // = ...
 public HashMap<Object,Object> theCache; // = ...
}

class Main {
 public static void init(TheState theState) {
 synchronized(theState.theMutex) {
 theState.theCache.put("year",new Integer(2017));
 printIt(theState)
 }
 }

 public static void printIt(TheState theState) {
 System.out.println(theState);
 }

 public static void main(String[] args) {
 TheState theState = new TheState();
 theState.theMutex = new Object();
 theState.theCache = new HashMap<>();

 init(theState);
 doIt(theState);
 }
}

No global State,  

but we now have to pass around the state.

Scala - Implicit Parameters

• If a method with implicit parameters misses arguments
for them, such arguments will be automatically provided.

• Eligible are all identifiers x that can be accessed at the
point of the method call without a prefix and that denote
an implicit parameter.

• [… more details will follow later]

20

From the language spec (Full definition):

A method with implicit parameters can be applied to arguments just like a normal method. In this case
the implicit label has no effect. However, if such a method misses arguments for its implicit
parameters, such arguments will be automatically provided.
The actual arguments that are eligible to be passed to an implicit parameter fall into two categories:
• First, eligible are all identifiers x that can be accessed at the point of the method call without a prefix

and that denote an implicit definition or an implicit parameter.
• Second, eligible are also all members of companion modules of the implicit parameter’s type that

are labeled implicit.

Design Challenge:  
Getting rid of Global State

21

import java.util.HashMap;

class State {
 var theMutex: Object = new Object()
 var theCache: HashMap[Object, Object] = new HashMap()
}

class StateMain {

 def init(implicit s: State): Unit = {
 s.theMutex.synchronized {
 s.theCache.put("year", new Integer(2017));
 }
 }

 def doIt(implicit s: State): Unit = {
 System.out.println(s);
 }

 implicit val s : State = new State();
 s.theMutex = new Object();
 s.theCache = new HashMap();

 init
 doIt
}

No global State,  

the state is implicitly passed around.

Avoid that objects are used in the
wrong context.
• an object which stores the result of an exam should be

bound to the respective exam and should not be
compared with some other object storing the results of
some other exam

• The value encapsulating the result of the analysis of a
method should only be used w.r.t. the specific data-flow
analysis that was used to create it.

22

Traits in Scala
trait Table[A, B] {
 def defaultValue: B
 def get(key: A): Option[B]
 def set(key: A, value: B) : Unit
 def apply(key: A) : B = get(key) match {
 case Some(value) ⇒ value; case None ⇒ defaultValue

 }
}

23

mixin
composition

class ListTable[A, B](val defaultValue: B) extends Table[A, B] {
 private var elems: List[(A, B)] = Nil
 def get(key: A) : Option[B] = elems collectFirst { case (`key`,value) => value }
 def set(key: A, value: B) : Unit = elems = (key, value) :: elems
}

trait SynchronizedTable[A, B] extends Table[A, B] {
 abstract override def get(key: A): Option[B] =
 this.synchronized { super.get(key) }
 abstract override def set(key: A, value: B) : Unit =  
 this.synchronized { super.set(key, value) }
}
object MyTable extends ListTable[String, Int](0) with SynchronizedTable[String, Int]

In Scala, traits are a unit of code reuse that encapsulate abstract and concrete method, field and type
definitions. Traits are reused by mixing them into classes. Multiple traits can be mixed into a class (mixin
composition).
Unlike classes, traits cannot (yet) have constructor parameters. Traits are always initialized after the
superclass is initialized.

One major difference when compared to multiple inheritance is that the target method of super calls is
not statically bound as in case of (multiple) inheritance. The target is determined anew whenever the trait
is mixed in. This (the dynamic nature of super calls) makes it possible to stack multiple modifications on
top of each other.

The following code snippets are taken from:
• Scala for the Impatient; Cay S. Horseman
• Programming in Scala 1.1; Martin Odersky, Lex Spoon, Bill Venners
• Scala in Depth; Joshua Suereth
• The Scala Specification

Traits in Scala (Continued)
trait LoggingTable[A, B] extends Table[A, B] {
 abstract override def get(key: A): B = {
 println("Get Called"); super.get(key)
 }
 abstract override def set(key: A, value: B) = {
 println("Set Called"); super.set(key, value)
 }
}

class MyTable
 extends ListTable[String, Int](0)
 with LoggingTable
 with SynchronizedTable

24

mixin
composition

(Order matters!)

Do we first want to acquire the lock or first log the call? The desired behavior is controlled by the mixin
order!

Mixin Composition in Scala
• In Scala, if you mixin multiple traits into a class the

inheritance relationship on base classes forms a directed
acyclic graph.

• A linearization of that graph is performed. 
The Linearization (Lin) of a class C (class C extends
C1 with ... with Cn) is defined as: 
Lin(C) = C, Lin(Cn) ⪼ ... ⪼ Lin(C1) 
where ⪼ concatenates the elements of the left operand with
the right operand, but elements of the right operand replace
those of the left operand. 
{a,A} ⪼ B = a,(A ⪼ B) if a ∉ B 
 = (A ⪼ B) if a ∈ B

25

Recall: The result of the linearization determines the target of super calls made in traits, but also
determines the initialization order.

Mixin Composition in Scala

• The linearization of class `Iter` is:

• { Iter, Lin(RichIterator) ⪼ Lin(StringIterator) }

• { Iter, Lin(RichIterator) ⪼ { StringIterator, Lin(AbsIterator) } }

• { Iter, Lin(RichIterator) ⪼ { StringIterator, AbsIterator, AnyRef } }

• { Iter, { RichIterator, AbsIterator, AnyRef } ⪼  
 { StringIterator, AbsIterator, AnyRef } }

• { Iter, RichIterator, StringIterator, AbsIterator, AnyRef, Any }

26

abstract class AbsIterator extends AnyRef { ... }
trait RichIterator extends AbsIterator { ... }
class StringIterator extends AbsIterator { ... }
class Iter extends StringIterator with RichIterator { ... }

The order is relevant!

{a,A} ⪼ B = a,(A ⪼ B) if a ∉ B 
 = (A ⪼ B) if a ∈ B

2nd Rule

In case of classical multiple inheritance, the method called by a super call is statically determined based
on the place where the call appears. With traits, the called method is determined by the linearization of
the class. In a way, super is much more flexible.

Traits in Scala (Continued)
trait LoggingTable[A, B] extends Table[A, B] {
 abstract override def get(key: A): B = {
 println("Get Called"); super.get(key)
 }
 abstract override def set(key: A, value: B) = {
 println("Set Called"); super.set(key, value)
 }
}

class MyTable
 extends ListTable[String, Int](0)
 with LoggingTable
 with SynchronizedTable

27

mixin
composition

(Order matters!)

In this case we will first acquire the lock (by the SynchronizedTable) before the call is logged.

Abstract Types in Scala
1. class Food

3. class Grass extends Food

5. abstract class Animal {
6. type SuitableFood <: Food
7. def eat(food: SuitableFood) : Unit
8. }

10. abstract class Mammal extends Animal

12. class Cow extends Mammal {
13. type SuitableFood = Grass
14. override def eat(food: Grass) : Unit = {}
15. }

28

Abstract Type

An abstract type declaration is a placeholder for a type that will be defined concretely in a subclass.
In the given example, SuitableFood refers to some type of Food (Food is an upper bound) that is still
unknown. Different subclasses can provide different realizations of SuitableFood - depending on the
needs of the respective animal.

Remark: Generics and abstract types can sometimes be used interchangeably. However, if you have
many type definitions abstract types are more scalable (e.g., the abstract type only does not need to be
redeclared in every abstract subtype; only in the (first) concrete one.)

Path-dependent types in Scala
class DogFood extends Food

class Dog extends Animal {
 type SuitableFood = DogFood
 override def eat(food: DogFood) : Unit = {}
}

29

scala> val bessy = new Cow  
bessy: Cow = Cow@10cd6d

scala> val lassie = new Dog  
lassie: Dog = Dog@d11fa6

scala> lassie eat (new bessy.SuitableFood)  
<console>:13: error: type mismatch;  
found : Grass  
required: DogFood  
lassie eat (new bessy.SuitableFood)

• In Scala objects can have types as members.
• The meaning of a type depends on the path you use to access it.
• The path is determined by the reference to an Object.
• Different paths give rise to different types.
• In general, a path-dependent type names an outer object.

Path-dependent types in Scala
class Food

abstract class Animal {
 type SuitableFood <: Food
 def createFood : SuitableFood
 def eat(food: this.SuitableFood) : Unit
}

class Cow extends Animal {
 class Grass extends Food
 type SuitableFood = Grass
 def createFood = new Grass
 override def eat(food: this.SuitableFood) : Unit = {}  
}  

val cow1 = new Cow
val cow2 = new Cow
cow1.eat(cow1.createFood)
cow1.eat(cow2.createFood)
cmd47.sc:1: type mismatch;  
 found : $sess.cmd45.cow2.Grass  
 required: $sess.cmd44.cow1.SuitableFood  
 (which expands to) $sess.cmd44.cow1.Grass

30

This cow only wants to eat food
especially created for it!

Grass is an inner class of Cow, therefore, to create an instance of Grass we need a cow object and this
cow object determines the path; therefore two cow objects give rise to two different paths!

(In Java an instance of a (non-static) inner class also always has a reference to its outer class and you
need an instance of the outer class to instantiate the inner class, but this does not affect the type system;
i.e., two “Map.Entry” objects have the same type independent of the underlying Map instance.)

Designing with Functional, Object-Oriented Programming
Languages with a Flexible Syntax

31

Creating an abstraction to express that we want to repeat something n
times.

def repeat[T: scala.reflect.ClassTag](times: Int)(f: ⇒ T): Array[T] = {  

 val array = new Array[T](times)
 var i = 0
 while (i < times) { array(i) = f; i += 1 }
 array
}

Can we further improve the comprehensibility:
Arrays.fill(n,{ () => in.readObject() })

Now, we can express that we want to read a value x times and create an
Array which stores the values using our new control-abstraction.

repeat(n){ in.readObject() }

By fusing object-oriented and functional programming and also providing a more flexible syntax we
are provided with further means to raise our abstraction level. In this example, we demonstrate how
to define our own “control-abstraction”! Defining a new control structure like this is not reasonably
possible in Java 7 or older. In Java >= 8; the situation gets better due to closures. However, the
syntax still doesn’t look like a native structure.

However, with power comes responsibility and it is easy to overdo!

Designing with Functional, Object-Oriented Programming
Languages with a Flexible Syntax vs. Explicit Language Features

32

val tempFile = File.createTempFile("demo", "tmp");
process(new java.io.FileOutputStream(tempFile)) { fout ⇒ 
 fout.write(42);
}

Using Scala’s language features enables us to define a new control
structure that resembles Java’s try-with-resources statement.

def process[C <: Closeable, T](closable: C)(r: C ⇒ T): T = {
 try { r(closable) }
 finally { if (closable != null) closable.close() }
}

File tempFile = File.createTempFile("demo", "tmp");
try (FileOutputStream fout = new FileOutputStream(tempFile)) {
fout.write(42);

}

Java’s native try-with-resources statement

Java 7’s try-with-resources statement is more powerful/safe. However, it is an explicit language
feature that was only added years after its need was identified.

Design Challenge

Implementing 
trait Col[X]{map[T](f:(X)=>T){…}}

Try to implement the classical map function, which performs
a mapping of the values of a collection using a given
function, only once for all collection classes.
The function should be defined by the “top-level” class
(e.g., Collection).
The type of the collection with the mapped values should
correspond to the runtime type of the source collection. If
this is not possible, a reasonable other collection should be
created. (The function should not fail!)

33

This is only a first approximation of the method’s signature.

trait Col[X] defines a generic type with the type variable X. Furthermore, it defines the generic
method map which defines the type parameter T and which gets a function f that maps a value of
type X to a value of type T. 
(In this context, loosely comparable to a generic abstract class in Java which has a type parameter and defines a
concrete, generic method map.)

Implementing Col[X]{map[T](f:(X)=>T){…}}

34

Initial Draft

trait Col[X] { def map[T](f : (X) => T) : Col[T] = {…} }
class List[X] extends Col[X] { /*does not override map!*/ …}
class BitSet extends Col[Int] {/*does not override map!*/ …} 

val l = List(1,2,3)
l.map(i => i +1) // should result in List[Int](2,3,4)

val b = BitSet(1,2,3)
b.map(i => i +1) // should result in BitSet[Int](2,3,4)

b.map(i => “I:"+i) // should result in ???("I:1","I:2","I:3")

Will b
e s

olv
ed

 la
ter

!

This is only a first approximation of the method’s signature.

This is a typical design challenge when defining new libraries: providing rich libraries with “minimal”
effort and a high level of customizability.

Programming Languages with
notable Features:
• RUST avoids buffer errors statically (based on ownership)  

Graydon Hoare, 2009

• Checked C avoids buffer errors statically and dynamically
(introduces new checked pointer types) 
David TardiF, June 2016 (v 0.5)

• Perl (3) implements a taint mode to avoid injections
dynamically 
Larry Wall, 1987

• Java made first steps to avoid cryptographic issues with the
“Cryptography Architecture”

• GO, Erlang,… have advanced support for concurrency
35

(Some languages avoid dead locks or race conditions.)

We need good style to cope with complexity!

36

Help is provided through established practices and techniques, design patterns and principles.

Good style can only be recommended, not enforced!

Eventually style rules will have to be turned into language features to be really effective.

General Design Principles

• Keep it short and simple
• Don't repeat yourself (also just called "DRY-Principle")
• High Cohesion
• Low Coupling
• No cyclic dependencies
• Make it testable
• Open-closed Design Principle
• Make it explicit/use Code
• Keep related things together
• Keep simple things simple
• Common-reuse/Common-closure/Reuse-release principles

37

The following principles apply at various abstraction levels!

Code/projects that adheres to these design principles generally have improved maintainability.

Object-Oriented Design Principles

• Liskov Substitution Principle

• Responsibility Driven Design

• …

38

Design Constraints

• Conway's Law 
A system's design is constrained by the organization's
communication structure.

39

