
Model Driven Development
in industrial practice
Dr. Martin Girschick
February 2018

Michael Eichberg
Thanks for attending my presentation about model-driven development, I hope you gained some insight into how MDD is applied successfully. Michael Eichberg will make the slides available to you. Feedback of any kind is highly appreciated, just send me an e-mail: martin.girschick@capgemini.com. You can also send me a photo/scan of the contact sheet or if you have any others questions concerning Capgemini.
 
As mentioned, I organize student events and workshops. Upcoming next is an “after work” event on 20th of March, where you can meet young colleagues and talk about their work at Capgemini. Details will be posted on https://www.fachschaft.informatik.tu-darmstadt.de/forum/viewforum.php?f=293 . If you are interested you can also just send me an e-mail.�



• Study and PhD at TU Darmstadt

• Since 2008 working for Capgemini

• Projects in Public Sector, Telecommunications, Finance, Logistics

• Different Roles: Developer, Architect, Quality Assurance, Project lead, Consultant, …

• Lead of german Capgemini Community for model-driven development

• University Relations for TU Darmstadt



4
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

4

in numbers

~200.000 
people worldwide

Over 120 
different 

nationalities

More than 40 
countries

Revenue worldwide

for 2016: 12,5 M€

2017: 50th 
anniversary



What do you know about MDD?



6
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Models are models, 

real life is different

No-one knows, 

how to do it (right)

Performance 

woes

All in and 

no way out

High effort 

with low return

This presentation 

refutes these 

arguments and 

gives examples 

on successful use 

of MDD.

Five arguments against model driven development



7
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Standardization and formal specification helps to 
solve complex problems.

runtime environment

(semi)formal 
specification

system 
design

reusable asset

project specific asset

software

manual

manual

system 
design

formal 
model

formal 
metamodel

manual

mostly automatic

abstraction level

advantages of MDD approach

✓ reusability, reproducability

✓ modeling is closer to problem domain

✓ important things get into focus

disadvantages of manual approach

 less formality and precision

 long development cycles

 high maintenance efforts

 high dependency on runtime environment



8
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Models are models, real life is different.

Bottom-Up

▪ selected areas are 
modelled and 
generated

▪ often heterogeneous 
tool landscape

Top-Down

▪ “Full-scale” MDD 
project

▪ higher setup effort

▪ high customer 
involvement

Closed System

▪Vendor controlled 
runtime.

▪Good tool support.

▪ Integration platform, 
often with analytical 
tools.

▪Examples: SAP, 
BPM-Suites, …



9
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

or simply data in the same or 
another format as the input 

model

so documents, XML or 
images can be created as 

well.

but it is not the only one
because not everything can 

be put into the model.

but the model is not limited to 
graphical representations

because text quite often 
allows for more concise 

representations.

and is not limited to UML
Because domain specific 

languages are often suited 
better.

“Model driven development uses formal models to generate 
derived artefacts.” – So what does that mean?

The generated artifacts can 
be models or source code

The model is a primary 
development artefact

A formal metamodel is 
required to generate 

artefacts

The modeling language
should be chosen carefully

Models are models, 

real life is different



10
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Don’t be afraid of metamodelling.
The concepts might sound strange, but they help to build a formal basis.

the model

meta-meta model

meta model

model

conforms to

conforms to

the language and transformation

abstract syntax

validation and 

transformation rules

defines

describes

concrete syntax

domain 

specific 

language

data

is instance of

an example

MOF

UML

class diagram

class instances M0

M1

M2

M3



11
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Let‘s take a look at a few example…
Domain specific languages are tailored towards specific applications.

technical business

M1

M2

M3



12
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

The UML can be extended in two ways.

▪The MOF meta-metamodel is used to define the 
Unified Modeling Language.

▪The UML consists of different viewpoints on 
software systems (e.g. class diagrams).

▪UML profiles offer a lightweight extension of UML 
using stereotypes and tagged values.

▪Heavyweight extensions, which add new 
graphical objects are possible as well, but there 
are nearly no tools available.

▪The OMG propagates MDA as a paradigm for 
model driven development using UML profiles.

M1

M2

M3



13
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Defining the right domain specific language is the 
key to success with MDD.

▪ In some cases, existing languages are sufficient but often defining your own 
languages provides greater flexibility and can be tailored to the needs of the 
customer.

▪Extensive tool support for custom DSLs is already available:

▪ Eclipse Modeling Platform, JetBrain MetaProgrammingSystem, Intentional Workbench

▪ Languages with integrated DSL support (e.g. Scala, .NET/LINQ)

existing languages  custom made DSLs



14
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

▪The type “ID” serves as an identifier for the type system

▪The type “INT” is used for integer type attributes.

▪You can use “|” to separate expanding literals, e.g. a: b | c;

▪The rules not only define the abstract syntax (metamodel structure) 
but also the concrete syntax (how actual model instances look like).

grammar de.capgemini.mdd.DataModel with org.eclipse.xtext.common.Terminals
generate dataModel "http://www.capgemini.de/mdd/DataModel"
Model:

(types+=StringType)*;

StringType:
"string" name=ID length=INT;

Excerpt from MDD school at Capgemini

Each rule starts with a literal (here “StringType”) 

following by a colon and then the production 

description. The rule is ended by a semicolon.

This is a simple model (an instance of the metamodel). When it 

is parsed, a metamodel element of type “StringType” is created 
and its attributes name is set to “address” and length to “30”.

string address 30

Replace “DataModel.xtext” with the following

Some examples for Xtext DSLs can be found on http://blog.efftinge.de/

The production contains 

the parts to which the 

literal is expanded. They 

are separated by 

whitespace.

http://blog.efftinge.de/


• Today's software systems consist mostly of 
standard components, which have to be 
configured correctly.

• The actual business logic is only a minor part.

• The idea of MDD is not to generate the 
complete application but only parts, which are 
not part of the platform.

• In addition, configuration for the platform can 
be generated!

Choosing the right platform is important.

contains generated 
executable code

Source: From HTTP up to JDBC as a picture

http://ptrthomas.wordpress.com/2006/06/06/java-call-stack-from-http-upto-jdbc-as-a-picture/

All in and no 

way out

http://ptrthomas.wordpress.com/2006/06/06/java-call-stack-from-http-upto-jdbc-as-a-picture/


16
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

generated code

(Java, OR-Mapping,Spring configuration)

target platform

(Java, Hibernate, Spring,..)

manually

written code

Eclipse

Enterprise Architect

N
o
ta

ti
o
n

(U
M

L
2
, 

X
M

L
)

Model instance

(ECore)

Model reader

(XMI2Ecore, XML2Ecore)

UML Model

(XMI)

Templates engine

XPandM
e
ta

m
o
d
e
l

(E
c
o
re

) 
 

tr
a
n
s
fo

rm
a
ti
o
n

X
T
e
n
d

XML Editor

XML Document

The multistage process from model to code.

generating

modelling

implementing

Transformator

Output-Modell

Input-Modell

MDD tool

output model

input model

L
a
n
g
u
a
g
e



17
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Up to 50% can be generated on certain platforms.

generiert

nicht generiert

generiert + 

manueller Code

Presentation Layer

Data Layer

Business Layer

Datenbank

Aufruf

Rückgabe

Common

PAI

 Parameter 

Information

PAI 

JCAFile

Adapter

PAI

Security 

Platform

PAI

Directory 

Platform

PAI 

UserSecurity-

Context

Performance 

Monitoring

eclipse RCP Client mit 

PAI Client Container 

Dialog

Service Proxy

GUI-Bibliothek

Dialog-

rahmen

ClientContainer

(Servlet)

Up-/Downstream Systems

DIALOG

Connect

SPASS2

DanTe

Smaragd

JPA

PAI

Logging

Transport 

Objects

Service

Locator

Configuration

Business Modul

Business Modul Facade

(Stateless Session Bean)

Data Access Object

(Stateless Session Bean)

Business Object

(Stateless Session Bean)

Business Object

(Stateless Session Bean)

Business Entity

(Entity Bean)

Business Entity

(Entity Bean)

Business Entity

(Entity Bean)

Business Modul

Data Access Object

(Stateless Session Bean)

Business Modul Facade

(Stateless Session Bean)

Business Object

(Stateless Session Bean)

Business Entity

(Entity Bean)

Business Entity

(Entity Bean)

Legende



18
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Four examples illustrate the potential for MDD.



19
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

“Software factory” for retirement provisioning 
(german: Altersversorgung)

Customer A

Customer B

Customer C

• Base- and business entitities

• In-/Exkasso

• Rules and Formulas for provisioning calculation

• Tariff- and Account-Management

• Printing

• Historation component

• Support for Multitenancy

Framework

• Persistence (Hibernate)

• Transaction (Hibernate)

• DI-Framework(Spring)

• Middleware (Webservices, Axis)

• Java

• Quasar-Client

• Security (Acegi)
Platform

Generated code 

for three different 

instances

High effort 

with low return



20
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Example: Mapping from Specification to Design

Fachklassendiagramm

Person_in_BG

«Attribute»

PersonNr:BA_ID_DS

Bedarfsgemeinschaft_ID:LfdNr_lang_DS

Geburtsdatum:Datum_DS

Kennzeichen_eigene_Zahlung:Ja_Nein_DS

Bemerkung:Bemerkung_80_DS[0..1]

Krankenversicherung_Person

«Attribute»

PersonNr:BA_ID_DS

Bedarfsgemeinschaft_ID:LfdNr_lang_DS

Krankenversicherung_gueltig_ab:Datum_DS

Krankenversicherung_Bemerkung:Bemerkung_80_DS[0..1]

Krankenkasse

«Attribute»

KK_Kontonummer:Krankenkassenkonto_DS

Gesetzliche_KV

«Attribute»

PersonNr:BA_ID_DS

Bedarfsgemeinschaft_ID:LfdNr_lang_DS

Krankenversicherung_gueltig_ab:Datum_DS

KK_Kontonummer:Krankenkassenkonto_DS

KV_Versichertennr:Versichertennummer_DS[0..1]

*
1

*

1

Person_KV

PersonInBG

{Table.name = "PERSON_IN_BG"}

(entity)

id:Long

PersonInBGData

{Table.name = "PERSON_IN_BG_DATA"}

(entity)

id:Long

bemerkung:String

geburtsDatum:DateTime

eigeneZahlung:JaNein

AbstractKVPerson

{Table.name = "KV_PERSON"}

(entity)

id:Long

AbstractKVPersonData

{Table.name = "KV_PERSON_DATA"}

(entity)

id:Long

bemerkung:String

gueltigAb:DateTime

KVGesetzlich

{Table.name = "KVGESETZLICH"}

(entity)

KVGesetzlichData

{Table.name = "KVGESETZLICH_DATA"}

(entity)

versNummerFamilie:String

id:Long

Krankenkasse

{Table.name = "KRANKENKASSE"}

(entity)

id:Long

1..21

1

*

1..21

*

1

AbstractKVPerson-

AbstractKVPersonData

KVGesetzlich-

DataKrankenkasse

PersonInBG-

PersonInBGData

PersonInBG-

AbstractKVPerson

Komponente: Person

Package: ~.fallgrunddaten.person.personen

Transformation Fachklassenmodell (AD)

Component-Package Mapping

Name conventions

Primary keys

Compositions and cardinalities

Inheritance



21
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Simplification of the generation process

Data in EA 
model

Run check 
scripts in EA

EA to XML

•Takes ~30min

SVN Update 
target

workspace

•In the meantime

Convert XML 
to UML

•Takes 1 min

Run the
generator

•Takes 45 min

Check errors
Commit all 

files to SVN.

Make changes to data in 
Java model

Run the 
generator

Model 
Validation 

errors, if any

Commit all files 
to SVN

•Takes 10 min

Old generation pipeline

Simplified new generation pipeline

No-one knows, 

how to do it (right)



22
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

More examples from a large project in the public 
sector.

Service Gateway Generator Document Generator

Business Process and Rule Engine Model Transformation

▪ Technology: Groovy, Velocity, Ant

▪ Copies a parameterizable project template using ant.

▪ Generates code for authorisation, dispatching and 
error handling using wsimport and a groovy script, 
which parses a WSDL  and control the velocity 
template engine.

▪ Technology: Enterprise Architect, .NET-Application

▪ The specification is modelled in the UML tool 
Enterprise Architect.

▪ Conventions for modelling include certain stereotypes  
and other aspects.

▪ A COM-based application reads the model from EA 
and controls Word to create a specification document.

▪ Technology: JBoss JBPM and Drools, MS Excel

▪ Validation rules for data are written using Excel.

▪ Macros and a converter creates native drools rules, 
which are parsed and startup of the application.

▪ Business processes are modelled using an Eclipse-
based graphical editor, which creates XML.

▪ A JBPM tool creates an SQL script from it.

▪ Technology: Enterprise Architect

▪ Code generation using proprietary EA template 
language

▪ Model transformation from specification to 
implementation model using so called “MDA style 
transformations” (also EA proprietary).

▪ Parts of the transformation script are generated using 
formulas and macros within an excel sheet.



23
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Business Rule Engine: JBoss Drools

• uses RETE algorithm to boost execution performance

• Runs on application server (e.g. Tomcat)

• Library approach

• Open source

• Homepage: http://www.jboss.org/drools

• Current Version: Drools 5
Drools Guvnor (BRMS/BPMS)

Drools Expert (rule engine)

Drools Flow (process/workflow)

Drools Fusion (event processing/temporal reasoning)

Drools Planner

The Rete algorithm is an efficient pattern

matching algorithm for implementing

production rule systems. …The word

'Rete' is Latin for 'net' or 'comb'. The

same word is used in modern Italian to

mean network. Charles Forgy has

reportedly stated that he adopted the

term 'Rete' because of its use in anatomy

to describe a network of blood vessels

and nerve fibers.

Performance 

woes

http://www.jboss.org/drools


25
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Sucess factors for MDD projects

Working Knowledge Management

▪ Consistent tool chain

▪ Community support

Customer acceptance

▪ Models are accepted artifacts

▪ Customer are actively involved in modelling

Distinct team roles

▪ Permanent team members with detailed 
knowledge of generator chain and modelling 
environment

▪ Capable offshore team

Early planning and project initialization

▪ Consider MDD during bid phase

▪ Early setup of tool chain with competent team

▪ MDD is not limited to the construction phase, 
consider all project phases

▪ Think about later: Migration, Merging, Lifecycle



26
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Models are models, 

real life is different

No-one knows, 

how to do it (right)

Performance 

woes

All in and 

no way out

High effort 

with low return

With organizational structures 

in place, an experienced team 

and early setup of a project 

tailored tool chain MDD 

provides several advantages 

over “classical” development.

Let’s revisit the five arguments against model driven 
development:



Copyright © Capgemini 2018. All Rights Reserved

Dr. Martin Girschick
martin.girschick@capgemini.com

„If you are interested in Capgemini, 
don‘t hesitate to contact me
or hand in the contact form!“

mailto:martin.girschick@capgemini.com


28
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

Appendix



29
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

The abstract syntax – defining the right metamodel
Distilled from Markus Völter: “MD*/DSL Best Practices”

▪ Understand the business and the language they use. Take a look at the documents they write.

▪ Ensure that it can properly be translated to code (or whatever derived artefact you want to create)

▪ Think of modularisation and viewpoints (or even annotation concepts) to cover certain aspects of 
the complete model. Find well defined connection points between them, make sure those “interfaces” 
are unidirectional and simple.

▪ Limit expressiveness

▪ Stick to declarative languages.

▪ Often, DSLs can be categorized  in two types:

• customization DSLs provide a vocabulary to express facts

• configuration DSLs provide values to parameters, they are often simpler to design but less 
expressive

▪ The languages is the “what”, the generator creates the “how”. Domain experts often only know the 
“what” but not necessarily the “how”.

▪ If the language needs to be turing complete, a DSL might not be a good idea. Define a proper API 
instead or provide hooks in the generated code to add expressiveness in a standard programming 
language. Internal DSLs or languages which can be properly extended might be an alternative as 
well.

http://voelter.de/data/pub/DSLBestPractices-2011Update.pdf

http://voelter.de/data/pub/DSLBestPractices-2011Update.pdf


30
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

The concrete syntax – Notation matters!
Partly distilled from Markus Völter’s paper.

▪ Stating the obvious (or maybe not)

▪ Stick to existing notations, if possible.

▪ Make sure, that appropriate tooling is available.

▪ Textual or graphical - choose carefully! Sometimes mixed forms or separate viewpoints (with the 
same or a different representation) help. Think of the different user groups.

▪ Provide proper defaults, try to make models small.

▪ Textual notations

▪ Appropriate tooling is often easier to find (e.g. proper editors, multiuser-support, build integration).

▪ Not limited to structured text. Tables or forms are possible as well. 

▪ It’s often easier to structure large models using text, beautifying can be automated.

▪ Graphical notations

▪ Might be necessary, if relationships exist (e.g. dependencies, flows, sequencing).

▪ Not all cases require a specialized editor – providing templates and convention might be enough.

▪ Specialized tools often offer GUI prototyping to create an appropriate editor (e.g. Eclipse-based 
GEF-Tools).



31
Copyright © Capgemini 2018. All Rights Reserved

Model Driven Development

▪ The semantics are encoded in the generator or interpreter.

▪However, the language user needs a description as well!

▪Keep generated code separate from manually written code.

▪Some systems offer “protected regions”, which are retained upon regeneration. 
Refrain from using them, uses appropriate design patterns and APIs instead.

▪User versioning for primary artefacts, only (models, transformation rules, 
manually written code).

▪Generate beautified code (higher acceptance, easier debugging).

▪Generate templates as a basis for manually written code. Do that only once.

Code Generation – make it nice and they’ll like it!


