
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Single Responsibility Principle

Winter Semester 17/18

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Single Responsibility Principle

A class should have only one reason to change.

2

What do you think of the following design?

3

Observation
• Rectangle provides a method to draw rectangle shapes on the screen. For that, Rectangle uses GUI

to implement draw().
• GeometricApplication is a package for geometrical computations, which also uses Rectangle

(area()).
• GeometricApplication depends on GUI (GUI has to be deployed along with Rectangle)

even if it only needs the geometrical functions of rectangles.
Evaluation
• Rectangle has multiple responsibilities: (1) Geometrics of rectangles: area() and (2) Drawing of

rectangles: draw()
• Rectangle has low cohesion!
• It is not a representation of a coherent concept, but a point to bundle needed functionality without

consideration of their cohesion. Geometrics and drawing do not naturally belong together.
Problems
• Rectangle has multiple reasons to change.
• If drawing functionality changes in the future, we need to retest and redeploy Rectangle in context of

GeometricalApplication!

+area() : double

Rectangle

Graphical
Application

Computational
Geometry
Application

GUI
+draw()

DrawableRectangle

A Single-Responsibility Compliant Design

4

Assessment
• Split responsibilities:

• Rectangle models geometric properties of rectangles.
• DrawableRectangle models visual properties of graphical rectangles.

• Computational Geometry Application uses only Rectangle. It only depends on the geometrical
aspects.

• Graphical Application uses DrawableRectangle and indirectly Rectangle. It needs both aspects
and therefore depends on both.

• Both classes can be reused easily!  
Only changes to the responsibilities we use will affect us.

• Both classes are easily understood!  
Each implements one concept.  
Rectangle represents a rectangle shape by its geometric properties.  
DrawableRectangle represents a rectangle by its visual properties.

Responsibility

• In general, a class is assigned the responsibility to know or do
something (one thing).

• Examples:
• Class PersonData is responsible for knowing the data of a

person.

• Class CarFactory is responsible for creating Car objects.

• A responsibility is an axis of change.

• A class with only one responsibility has only one reason to
change!

5

In general, if new functionality must be achieved, or existing functionality needs to be changed, the
responsibilities of classes must be changed.

Cohesion
(conceptual view)

• Cohesion measures the degree of togetherness among
the elements of a class.

• In a class with high cohesion every element is part of the
implementation of exactly one concept. The elements of
the class work together to achieve one common
functionality.

• A class with high cohesion often implements only one
responsibility.

6

Cohesion actually measures the extent to which operations and data within a class belong to the concept
this class is representing. Therefore, a class with low cohesion – i.e., a class where the operations and
data actually belongs to several concepts – violates the single-responsibility principle.

Common metrics that are defined to measure the cohesion (such as LCOM(*)) are usually not working at
the conceptual level and hence, would identify a class such as PersonData that stores information
regarding a person and which usually offers a large number of "getter" and "setter" methods as non-
cohesive. But, from a conceptual perspective this class is cohesive.

SRP and Cohesion

• Applying the single-responsibility principle maximizes the
cohesion of classes.

• Classes with high cohesion ...
• can be reused easily,

• are easily understood,
• protect clients from changes, that should not affect

them.

7

In other words, applying the SRP improves reusability and comprehensibility (→ maintainability).

java.util.Date

• The class Date represents a specific instant in time, with
millisecond precision.

8

Do we have a SRP Violation?

 int getSeconds()
 long getTime()

 int getTimezoneOffset()
 int getYear()

 int hashCode()
static long parse(String s)

 void setDate(int date)
 void setHours(int hours)

 void setMinutes(int minutes)
… …

java.util.Date

• The class Date represents a specific instant in time, with
millisecond precision.

• … 
public static long parse(String s)  
Attempts to interpret the string s as a representation of a
date and time. If the attempt is successful, the time
indicated is returned represented as the distance,
measured in milliseconds, of that time from the epoch
(00:00:00 GMT on January 1, 1970). If the attempt fails,
an IllegalArgumentException is thrown.  
…

9

Do we have a SRP Violation?

In fact the documentation of java.util.Date (now) admits that it violated the SRP:

	 “…Prior to JDK 1.1, the class Date had two additional functions….”

both types of functions are now deprecated (since Feb. 1997).

(Please note, a static method is not per-se a violation of the Single Responsibility Principle - it could, e.g.,
be the classes factory method!)

Only apply a principle,
if there is a symptom!

10

Do perform the strategic application of principles! Be agile and modify the design when needed.

Choose the kinds of changes to guide your application of the single-responsibility principle. Guess the
most likely kinds of changes derived from experience. Experienced designers hope to know the user and
an industry well enough to judge the probability of different kinds of changes.
Invoke the single-responsibility principle against the most probable changes.

An axis of change is an axis of change only if the change actually occurs.

