
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Interface Segregation Principle

Winter Semester 17/18

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Interface Segregation Principle

Clients should not be forced to depend on methods that they do
not use.

2

Introduction by Example

• Consider the development of software for an automated
teller machine (ATM):

• Support for the following types of transactions is
required: withdraw, deposit, and transfer.

• Support for different languages and support for
different kinds of UIs is also required

• Each transaction class needs to call methods on the
GUI  
E.g., to ask for the amount to deposit, withdraw,
transfer.

3

Introduction by Example
• Initial design of a software for an automatic teller machine

(ATM):

4

What do you think?

A Polluted Interface

• It declares methods that
do not belong together.

• It forces classes to depend
on unused methods and
therefore depend on
changes that should not
affect them.

• ISP states that such
interfaces should be split.

5

ATM UI is a polluted interface!

When clients depend on methods
they do not use, they become

subject to changes forced upon
these methods by other clients.

6

The Rationale Behind ISP

How does an ISP compliant solution look like?

7

An ISP Compliant Solution

8

Transfer
Transaction

Withdrawal
Transaction

Deposit
Transaction

+ Execute ()

Transaction
{abstract}

+ requestDepositAmount ()
+ requestWithdrawalAmount ()
+ requestTransferAmount ()
+ informInsufficientFunds ()

«interface»
ATM UI

+ requestTransferAmount ()

«interface»
Transfer UI

+ requestWithdrawalAmount ()
+ informInsufficientFunds ()

«interface»
Withdrawal UI

+ requestDepositAmount ()

«interface»
Deposit UI

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Interface / Trait Segregation Principle  

Clients should not be forced to depend on methods that they do
not use.

9

Try to group possible clients
of a class and have an

interface/trait for each group.

10

General Strategy

Try to group possible clients
of a class and have an

interface/trait for each group.

11

General Strategy

Proliferation of
Interfaces/Traits⚠

ISP in Scala (2.12.x) - Case Study

12

ISP in Scala (2.12.x) - Case Study

13

Do we have an ISP violation?

14

scala.collection.Traversable (excerpt)
Traversable is one of THE top-level classes of Scala’s collection library.

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Interface (/ Trait) Segregation Principle  
(In case of Java 8 (/ Scala).)

Clients should not be forced to depend on methods that they do
not use.
Subtypes should not be forced to inherit methods
which have a specific semantics.

15

ISP violations in particular lead to …  
(a) increased maintenance efforts and (b) reduced reusability.

