
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Open-Closed Principle

Winter Semester 17/18

– Object-Oriented Software Construction; 2nd Edition; Bertand Meyer,1997
–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Open-Closed Principle

Software entities (classes, modules, functions, components, etc.)
should be open for extension, but closed for
modifications.

2

Extension: Extending the behavior of a module.

Modification: Changing the code of a module.

Open for extension means that when requirements of the application change, we can extend the module
with new behaviors that reflect those changes. We change what the module does.

Closed for modification means that changes in behavior do not result in changes in the module's source
or binary code.

Reasons for closing modules against changes/
for making modules open for extension

• The module was delivered to customers and a change
will not be accepted. If you need to change something
later, hopefully you opened your module for extension!

• The module is a third-party Library/Framework and only
available as binary code. If you need to change
something, hopefully the third-party opened the module
for extension!

• Not having to change existing code means modular
compilation, testing and debugging.

3

The interface of libraries that are widely used is basically hammered in stone; it cannot be changed
anymore and even extending it, is very hard!

To enable extending an entity
without modifying it, abstract
over subparts of its behavior.

4

Abstraction is the Key

Many programming languages allow to create abstractions that are fixed and yet represent an unbounded
group of possible behaviors!

Different kinds of abstraction mechanisms exist:
• Object-oriented languages

• abstractions are encoded in abstract base classes resp. interfaces.
• unbounded group of possible behaviors is represented by all the possible derivative classes resp.

implementations.
• Functional languages

• abstractions are encoded in function types.
• unbounded group of possible behaviors is represented by all the possible first-class functions of the

declared type.

In the following, we shortly discuss the two main ways of abstracting over variability in object-oriented
programs.

Abstracting Over Variations I

5

+doLayout()
...

Container

+doLayout()

ContainerFlowLayout

+doLayout()

ContainerGridLayout

• Container declares the layout functionality but does not implement it. The rest of Container is
implemented against the abstraction.

• Concrete subclasses fill in the details over which Container’s implementation abstract.

Abstraction by means of inheritance.

Abstracting Over Variations II

6

+doLayout()
...

«interface»
LayoutManager

+doLayout()

FlowLayout

+doLayout()

GridLayout

+setLayout(LayoutManager)
...

Container

• Container delegates the layout functionality to an abstraction. The rest of its functionality is
implemented against this abstraction.

• To change the behavior of an instance of Container we configure it with the LayoutManager of
our choice.

• We can add completely new behavior by implementing our own LayoutManager.

Abstraction by means of subtype polymorphism.

A Possible Design for Drawable Shapes

7

Drawing is implemented in separate methods (e.g., of class Application).

+getType() : ShapeType
...

«interface»
Shape

+getType() : ShapeType
+getRadius() : double
+getCenter() : Point

Circle

+getType() : ShapeType
+getWidth() : double
+getHeight() : double
+getTopLeftCorner() :
Point

Rectangle

+Circle
+Rectangle

«enumeration»
ShapeType

• Each Shape identifies itself via the enumeration ShapeType.
• Realizations of Shape declare specialized methods for the shape type they represent.

(Such a design may be desirable, because you don’t want to pollute the interface of Shape/you want to
have a SRP compliant solution.)

Consider an application that draws shapes - circles and rectangles
– on a standard GUI.

8

Implementation of the Drawing Functionality

9

class ShapeDrawer {
 public void drawAllShapes(List<Shape> shapes) {
 for(Shape shape : shapes) {
 switch(shape.getType()) {
 case Circle:
 drawCircle((Circle)shape);
 break;
 case Rectangle:
 drawRectangle((Rectangle)shape);
 break;
 } } }

 private void drawCircle(Circle circle) { ... }

 private void drawRectangle(Rectangle rectangle) { ... }
}

Does this design conform to the open-closed design
principle?
Evaluating the proposed design
• Adding new shapes is hard, we need to:

• Implement a new realization of Shape.
• Add a new member to ShapeType.  

This possibly leads to a recompile of all other realizations of Shape.
• drawAllShapes (and every method that uses shapes of different types) must be changed.  

We have to hunt for every place that contains conditional logic that distinguishes between types of
shapes and we have to add code to it.

• drawAllShapes is hard to reuse! When we reuse it, we have to bring along Rectangle and
Circle.

Implementation of the Drawing Functionality

10

class ShapeDrawer {
 public void drawAllShapes(List<Shape> shapes) {
 for(Shape shape : shapes) {
 switch(shape.getType()) {
 case Circle:
 drawCircle((Circle)shape);
 break;
 case Rectangle:
 drawRectangle((Rectangle)shape);
 break;
 } } }

 private void drawCircle(Circle circle) { ... }

 private void drawRectangle(Rectangle rectangle) { ... }
}

In which cases is such a design Ok?

If the underlying type hierarchy will “never” change, due to some
higher-level reasons.

Assessing Designs

• Rigid designs are hard to change – every change causes
many changes to other parts of the system.

• Fragile designs tend to break in many places when a
single change is made.

• Immobile designs contain parts that could be useful in
other systems, but the effort and risk involved with
separating those parts from the original system are too
big.

11

Som
e

Ter
mino

log
y

I.e., when we want to evaluate a design, we can ask ourselves: Does it show signs of rigidity, fragility or
immobility?

Evaluating the Design

• The proposed design
violates the open-closed
design principle with
respect to extensions
with new kinds of
shapes.

• We need to close our
module against this kind
of change by building
appropriate abstractions.

12

Our design is rigid, fragile and immobile.

class Application {
 public void drawAllShapes(List<Shape> shapes) {
 for(Shape shape : shapes) {
 switch(shape.getType()) {
 case Circle:
 drawCircle((Circle)shape);
 break;
 case Rectangle:
 drawRectangle((Rectangle)shape);
 break;
 } } }

 private void drawCircle(Circle circle) { ... }

 private void drawRectangle(Rectangle rectangle) { ... }
}

Assessing our design w.r.t. its rigidity, fragility and immobility:
• Our example design is rigid: Adding a new shape causes many existing classes

to be changed.
• Our example design is fragile: Many switch/case (if/else) statements that are

both hard to find and hard to decipher and there is no “compile-time safety”
• Our example design is immobile: drawAllShapes and drawXXX is hard to

reuse.

Refined Design for Drawable Shapes

13

+draw() : void
...

«interface»
Shape

+draw() : void
+getRadius() : double
+getCenter() : Point

Circle

+draw() : void
+getWidth() : double
+getHeight() : double
+getTopLeftCorner() :
Point

Rectangle

«method»

void drawAllShapes(List<Shape> shapes){
for(Shape shape : shapes)

shape.draw();
}

• Makes adding new shapes possible without modification.  
We just need to implement a new realization of Shape.

• drawAllShapes only depends on Shape.  
We could reuse it unchanged; however, it has become so trivial that there is no immediate need.

But, now Shape has two responsibilities: a “knowing” and a “doing” responsibility, but there is still no
(relevant) SRP violation, because there call still has only one reason to change.

Evaluating the Extensibility

14

+draw() : void
...

«interface»
Shape

+draw() : void
+getRadius() : double
+getCenter() : Point

Circle

+draw() : void
+getWidth() : double
+getHeight() : double
+getTopLeftCorner() :
Point

Rectangle

«method»

void drawAllShapes(List<Shape> shapes){
for(Shape shape : shapes)

shape.draw();
}

Refined Design for Drawable Shapes

This solution complies to the open-closed design principle.

Do ask yourself whether this unconditional statement is true!

Evaluating the Extensibility

+draw() : void
...

«interface»
Shape

+draw() : void
+getRadius() : double
+getCenter() : Point

Circle

+draw() : void
+getWidth() : double
+getHeight() : double
+getTopLeftCorner() :
Point

Rectangle

«method»

void drawAllShapes(List<Shape> shapes){
for(Shape shape : shapes)

shape.draw();
}

15

Refined Design for Drawable Shapes

This solution complies to the open-closed design principle.
These abstractions are more of an hindrance to several other kinds of changes.

The statement: “This solution complies to the open-closed design principle.” is – of course – not unconditionally
correct. It is not possible to be open for all kinds of extension and also be closed for modification.

Examples of other types of extensions:
• Consider extending the design with further shape functions:

• shape transformations, shape dragging, …
• calculating the intersection or union of shapes, etc.

• Consider adding support for different operating systems.  
The implementation of the drawing functionality varies for different operating systems.

Abstractions  
May Support or Hinder Change!
• Change is easy if change units correspond to abstraction

units.

• Change is tedious if change units do not correspond to
abstraction units.

16

Here, “change” means adding or changing behavior.

In our example, adding a new type of Shape is easy as it is directly supported by inheritance and
subtyping.

Abstractions  
Reflect a Viewpoint

17

No matter how “closed” a module is, there will
always be some kind of change against which it is

not closed.

In general, there is no model that is natural to all contexts.

Imagine: Development of a "Zoo Software"

• Three stakeholders:
• Veterinary surgeon:What matters is how animals

reproduce!

• Trainer: What matters is the intelligence!
• Keeper: What matters is what they eat!

18

On the "Natural" Model Structure

One Possible Class Hierarchy When Modeling Animals

19

Oviparous

Crocodile Goose Pelican

Animal

Mammal

Bat Whale Sealion

Do you see a problem? (In other words: whose viewpoint was chosen?)

When we consider the classes Oviparous and Mammal it is obvious that the class hierarchy reflects the
veterinary surgeon's understanding.

The Animal World From a Trainer's Viewpoint

The show shall start with the pink
pelicans and the African geese
flying across the stage. They are
to land at one end of the arena
and then walk towards a small
door on the side. At the same
time, a killer whale should swim
in circles and jump just as the
pelicans fly by. After the jump,
the sea lion should swim past the
whale, jump out of the pool, and
walk towards the center stage
where the announcer is waiting
for him.

20

The Show

Walker

Animal

Flyer Swimmer Jumper

Show

Models Reflecting Different Viewpoints Overlap

21

Walker

Animal

Flyer Swimmer Jumper

Show

Oviparous

Crocodile Goose Pelican

Animal

Mammal

Bat Whale Sealion

• Elements of a category in one model correspond to several categories in the other model (and vice
versa).

• Adopting the veterinary viewpoint hinders changes concerning trainer’s viewpoint (and vice versa).

Most programming languages
(e.g., Java) and tools do not well
support the modeling of the world
based on co-existing viewpoints.

22

No matter how “closed” a module is, there will always be some kind of
change against which it is not closed.

Using a programming language which offers more advanced modeling mechanisms (such as Scala using
traits), it may be possible to create a design that more closely models the presented world - i.e., which will
reduce the representational gap.

Strategic Closure

• Choose the kinds of changes against which to close your
module.

• Guess at the most likely kinds of changes.

• Construct abstractions to protect against those changes.

• Prescience derived from experience:

• Experienced designers hope to know the user and an
industry well enough to judge the probability of different
kinds of changes.

• Invoke open-closed principle against the most probable
changes.

23

Be Agile

• Conforming to the open-closed principle is expensive:

• Development time and effort to create the appropriate
abstractions.

• Created abstractions might increase the complexity of the
design.

• Needless, accidental complexity.

• Incorrect abstractions supported/maintained even if not
used.

• Be agile: Wait for changes to happen and close against them.
24

Recall that guesses about the likely kinds of changes to an
application over time will often be wrong.

– Object-Oriented Software Construction; 2nd Edition; Bertand Meyer,1997
– Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Open-Closed Principle

Software entities (classes, modules, functions, components, etc.)
should be open for extension, but closed for
modifications.

25

• Abstraction is the key to supporting the open-
closed design principle.

• No matter how closed a module is, there will always
be some kind of change against which it is not
closed.

