
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Open-Closed Principle

Winter Semester 17/18

– Object-Oriented Software Construction; 2nd Edition; Bertand Meyer,1997
–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Open-Closed Principle

Software entities (classes, modules, functions, components, etc.)
should be open for extension, but closed for
modifications.

2

Reasons for closing modules against changes/
for making modules open for extension

• The module was delivered to customers and a change
will not be accepted. If you need to change something
later, hopefully you opened your module for extension!

• The module is a third-party Library/Framework and only
available as binary code. If you need to change
something, hopefully the third-party opened the module
for extension!

• Not having to change existing code means modular
compilation, testing and debugging.

3

To enable extending an entity
without modifying it, abstract
over subparts of its behavior.

4

Abstraction is the Key

Abstracting Over Variations I

5

+doLayout()
...

Container

+doLayout()

ContainerFlowLayout

+doLayout()

ContainerGridLayout

Abstracting Over Variations II

6

+doLayout()
...

«interface»
LayoutManager

+doLayout()

FlowLayout

+doLayout()

GridLayout

+setLayout(LayoutManager)
...

Container

A Possible Design for Drawable Shapes

7

Drawing is implemented in separate methods (e.g., of class Application).

+getType() : ShapeType
...

«interface»
Shape

+getType() : ShapeType
+getRadius() : double
+getCenter() : Point

Circle

+getType() : ShapeType
+getWidth() : double
+getHeight() : double
+getTopLeftCorner() :
Point

Rectangle

+Circle
+Rectangle

«enumeration»
ShapeType

Consider an application that draws shapes - circles and rectangles
– on a standard GUI.

8

Implementation of the Drawing Functionality

9

class ShapeDrawer {
 public void drawAllShapes(List<Shape> shapes) {
 for(Shape shape : shapes) {
 switch(shape.getType()) {
 case Circle:
 drawCircle((Circle)shape);
 break;
 case Rectangle:
 drawRectangle((Rectangle)shape);
 break;
 } } }

 private void drawCircle(Circle circle) { ... }

 private void drawRectangle(Rectangle rectangle) { ... }
}

Implementation of the Drawing Functionality

10

class ShapeDrawer {
 public void drawAllShapes(List<Shape> shapes) {
 for(Shape shape : shapes) {
 switch(shape.getType()) {
 case Circle:
 drawCircle((Circle)shape);
 break;
 case Rectangle:
 drawRectangle((Rectangle)shape);
 break;
 } } }

 private void drawCircle(Circle circle) { ... }

 private void drawRectangle(Rectangle rectangle) { ... }
}

In which cases is such a design Ok?

Assessing Designs

• Rigid designs are hard to change – every change causes
many changes to other parts of the system.

• Fragile designs tend to break in many places when a
single change is made.

• Immobile designs contain parts that could be useful in
other systems, but the effort and risk involved with
separating those parts from the original system are too
big.

11

Som
e

Ter
mino

log
y

Evaluating the Design

• The proposed design
violates the open-closed
design principle with
respect to extensions
with new kinds of
shapes.

• We need to close our
module against this kind
of change by building
appropriate abstractions.

12

Our design is rigid, fragile and immobile.

class Application {
 public void drawAllShapes(List<Shape> shapes) {
 for(Shape shape : shapes) {
 switch(shape.getType()) {
 case Circle:
 drawCircle((Circle)shape);
 break;
 case Rectangle:
 drawRectangle((Rectangle)shape);
 break;
 } } }

 private void drawCircle(Circle circle) { ... }

 private void drawRectangle(Rectangle rectangle) { ... }
}

Refined Design for Drawable Shapes

13

+draw() : void
...

«interface»
Shape

+draw() : void
+getRadius() : double
+getCenter() : Point

Circle

+draw() : void
+getWidth() : double
+getHeight() : double
+getTopLeftCorner() :
Point

Rectangle

«method»

void drawAllShapes(List<Shape> shapes){
for(Shape shape : shapes)

shape.draw();
}

Evaluating the Extensibility

14

+draw() : void
...

«interface»
Shape

+draw() : void
+getRadius() : double
+getCenter() : Point

Circle

+draw() : void
+getWidth() : double
+getHeight() : double
+getTopLeftCorner() :
Point

Rectangle

«method»

void drawAllShapes(List<Shape> shapes){
for(Shape shape : shapes)

shape.draw();
}

Refined Design for Drawable Shapes

This solution complies to the open-closed design principle.

Evaluating the Extensibility

+draw() : void
...

«interface»
Shape

+draw() : void
+getRadius() : double
+getCenter() : Point

Circle

+draw() : void
+getWidth() : double
+getHeight() : double
+getTopLeftCorner() :
Point

Rectangle

«method»

void drawAllShapes(List<Shape> shapes){
for(Shape shape : shapes)

shape.draw();
}

15

Refined Design for Drawable Shapes

This solution complies to the open-closed design principle.
These abstractions are more of an hindrance to several other kinds of changes.

Abstractions  
May Support or Hinder Change!
• Change is easy if change units correspond to abstraction

units.

• Change is tedious if change units do not correspond to
abstraction units.

16

Abstractions  
Reflect a Viewpoint

17

No matter how “closed” a module is, there will
always be some kind of change against which it is

not closed.

Imagine: Development of a "Zoo Software"

• Three stakeholders:

• Veterinary surgeon:What matters is how animals
reproduce!

• Trainer: What matters is the intelligence!

• Keeper: What matters is what they eat!

18

On the "Natural" Model Structure

One Possible Class Hierarchy When Modeling Animals

19

Oviparous

Crocodile Goose Pelican

Animal

Mammal

Bat Whale Sealion

The Animal World From a Trainer's Viewpoint

The show shall start with the pink
pelicans and the African geese
flying across the stage. They are
to land at one end of the arena
and then walk towards a small
door on the side. At the same
time, a killer whale should swim
in circles and jump just as the
pelicans fly by. After the jump,
the sea lion should swim past the
whale, jump out of the pool, and
walk towards the center stage
where the announcer is waiting
for him.

20

The Show

Walker

Animal

Flyer Swimmer Jumper

Show

Models Reflecting Different Viewpoints Overlap

21

Walker

Animal

Flyer Swimmer Jumper

Show

Oviparous

Crocodile Goose Pelican

Animal

Mammal

Bat Whale Sealion

Most programming languages
(e.g., Java) and tools do not well
support the modeling of the world
based on co-existing viewpoints.

22

No matter how “closed” a module is, there will always be some kind of
change against which it is not closed.

Strategic Closure

• Choose the kinds of changes against which to close your
module.

• Guess at the most likely kinds of changes.

• Construct abstractions to protect against those changes.

• Prescience derived from experience:

• Experienced designers hope to know the user and an
industry well enough to judge the probability of different
kinds of changes.

• Invoke open-closed principle against the most probable
changes.

23

Be Agile

• Conforming to the open-closed principle is expensive:

• Development time and effort to create the appropriate
abstractions.

• Created abstractions might increase the complexity of the
design.

• Needless, accidental complexity.

• Incorrect abstractions supported/maintained even if not
used.

• Be agile: Wait for changes to happen and close against them.
24

Recall that guesses about the likely kinds of changes to an
application over time will often be wrong.

– Object-Oriented Software Construction; 2nd Edition; Bertand Meyer,1997
– Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Open-Closed Principle

Software entities (classes, modules, functions, components, etc.)
should be open for extension, but closed for
modifications.

25

• Abstraction is the key to supporting the open-
closed design principle.

• No matter how closed a module is, there will always
be some kind of change against which it is not
closed.

