Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik
Technische Universitat Darmstadt

A Critical View on Inheritance

Variations at the Level of
Multiple Objects

So far, we considered variations,
whose scope are individual classes.
But, no class Is an island!

Window Menus

lllustrative Example

Menu

itemAt(int) : Menultem

itemCount() : int Menult
enultem

addltem(Menultem) : void H {ordered}

addAction(String,Action) : void _
label: String

% action : Action

\‘ display Text() : String

draw(Graphics): void

/\

PopupMenu MenuBar
A 1 ‘
* {ordered}
1 CascadeMenu CheckMenu RadioMenu
Item Item Item

Different Kinds of Menus

abstract class Menu {
List<Menultem> 1items;

Menultem itemAt(int 1) {
return items.get(1i);

¥

int 1temCount() { return items.size(); }

void addItem(Menultem item) { items.add(item); }

vold addAction(String label, Action action) {
i1tems.add(new Menultem(label, action));

¥
¥
class PopupMenu extends Menu { ... }

class MenuBar extends Menu { ... }

Different Kinds of Menu ltems

class Menultem {
String label;
Action action;

Menultem(String label, Action action) {
this.label = label;

this.action = action;

¥

String displayText() { return label; }
vold draw(Graphics g) { .. displayText() .. }

h

class CascadeMenultem extends Menultem {
PopupMenu menu;
void addItem(Menultem item) { menu.addItem(item); }

h

class CheckMenultem extends Menultem { .. }
class RadioMenultem extends Menultem { .. }

5

Inheritance for Optional Features of
Menus

* Variations of menu functionality affect multiple objects
constituting the menu structure.

* Since these objects are implemented by different
classes, we need several new subclasses to express
variations of menu functionality.

* This technique has several problems, which will be
llustrated in the following by a particular example
variation: Adding accelerator keys to menus.

Menu Items with Accelerator Keys
class extends MenuItem {

KeyStroke accelKey;

boolean processKey(KeyStroke ks) {
1f (accelKey != null && accelKey.equals(Cks)) {
performAction();
return true;

h

return false;

h

vold setAccelerator(KeyStroke ks) { accelKey = ks; }

void draw(Graphics g) {
super.draw(g);
displayAccelKey();

h

h

Menus with Accelerator Keys

abstract class extends Menu {

boolean processKey(KeyStroke ks) {
for (int 1 = 0; 1 < 1temCount(); 1++) {
1f (((MenultemAccel) itemAt(1i)).processKey(ks)) return true;
¥

return false;

h

volid addAction(String label, Action action) {
i1tems.add(new MenultemAccel(label, action));

}

h

Non-Explicit Covariant Dependencies

* Covariant dependencies between objects:

* The varying functionality of an object in a group may need to access the
corresponding varying functionality of another object of the group.

* The type declarations in our design do not express covariant dependencies
between the objects of a group.

* References between objects are typed by invariant types, which provide a fixed
interface.

abstract class MenuAccel extends Menu {

boolean processKey(KeyStroke ks) {
for (int 1 = 0; 1 < 1temCount(); 1++) {
1f (((MenultemAccel) itemAt(i)).processKey(ks)) return true;
}

return false;

}

}
Covariant dependencies are emulated by type-casts.

9

Instantiation-Related Reusability Problems

e Code that instantiates the classes of an object group cannot be
reused with different variations of the group.

abstract class Menu {

vold addAction(String label, Action action) {
items.add(new Menultem(// <= Creates a MenuItem
label, action
D)3
ks

}

abstract class MenuAccel extends Menu {

volid addAction(String label, Action action) {
items.add(new MenultemAccel(// <= Creates a MenultemAccel
label, action

Instantiation code can be spread all over the application.

10

Menu Contributor for Operations on Files

A menu of an application can be built from different reusable
pleces, provided by ditfferent menu contributors.

interface MenuContributor {
void contribute(Menu menu);

}

class FileMenuContrib implements MenuContributor {

void contribute(Menu menu) {
CascadeMenultem openWith = new CascadeMenultem(”Open With”);
menu.addItem(openWith);
Menultem openWithTE =
new Menultem(”Text Editor”, createOpenWithTEAction());
openWith.addItem(CopenWithTE);

Menultem readOnly =
new CheckMenultem(”Read Only”, createReadOnlyAction());
menu.addItem(readOnly)

11

Instantiation-Related Reusability Problem

* |n some situations, overriding of instantiation code can
have a cascade effect.

e An extension of ¢
classes that Insta

ass C mandates extensions of all

ntiate C.

e This In turn mandates extensions of further classes that
instantiate classes that instantiate C.

Can you imagine a workaround to address instantiation-related problems?

12

ADbstract ractory Pattern

v

«interface»

AbstractFactory

createProdA()
createProdB()

/\ /\

| I

I_>
|

ConcreteFactory

createProdA()
createProdB()

ConcreteFactory

createProdA()
createProdB()

«interface»

Client

AbstractProductA <

JAN

ProductAl ProductA2

«interface»

AbstractProductB <

JAN

ProductB1 ProductB2

13

Factories for Instantiating Objects

interface MenuFactory {

Menultem [@glead=\CHRPIRLI(String name, Action action);

CascadeMenultem [dg:lehd=l0ei eleloSIIRLNI(String name);

14

Factories for Instantiating Objects

class FileMenuContrib implements MenuContributor {

vold contribute(
Menu menu,
MenuFactory factory // <= we need a reference to the factory

) 1

Menultem open = factory.createCascadeMenultem(”0Open”);
menu.addItem(open);

Menultem openWithTE = factory.createMenultem(...);
open.addItemCopenWithTE);

MenuItem readOnly = factory.createCheckMenultem(...);
menu.addItem(readOnly)

-

}

15

Factories for Instantiating Objects

class BaseMenuFactory implements MenuFactory {
Menultem createMenultem(String name, Action action) {
return new Menultem(name, action);
5
CascadeMenultem createCascadeMenultem(String name) {
return new CasadeMenultem(name);

}

}

class AccelMenuFactory implements MenuFactory {
MenultemAccel createMenultem(String name, Action action) {
return new MenultemAccel(name, action);
5
CascadeMenultemAccel createCascadeMenuIltem(String name) {
return new CasadeMenultemAccel(nhame);

}

}

16

Deficiencies Of The Abstract Factory Pattern

e The infrastructure for the design pattern must be implemented and maintained.
* |ncreased complexity of design.

» Correct usage of the pattern cannot be enforced:

 NoO guarantee that classes are instantiated exclusively over factory methods,

 No guarantee that only objects are used together that are instantiated by the
same factory.

e |ssues with managing the reference to the abstract factory.

* The factory can be implemented as a Singleton for convenient access to it
within entire application.
This solution would allow to use only one specific variant of the composite within
the same application.

* A more flexible solution requires explicit passing of the reference to the
factory from object to object.

17

Combining Composite & Individual Variation

Problem: How to combine variations of individual
classes with those of features of a class composite.

* Feature variations at the level of object composites
(e.g., accelerator key support).

* Variations of individual elements of the composite
(e.g., variations of menus and items).

18

Menu Items with Accelerator Keys

class MenultemAccel extends Menultem {

}

class CascadeMenultemAccel extends 777
class CheckMenuItemAccel extends 777
class RadioMenultemAccel extends 777

19

Menus with Accelerator Keys

abstract class MenuAccel extends Menu {

}

class PopupMenuAccel extends 777
class MenuBarAccel extends 777

20

In languages with single inheritance,
such as Java, combining composite
& Individual variations Is non-trivial
and leads to code duplication.

21

The Problem in a Nutshell

 We need to extend A (and in
parallel to it also its

subclasses B and C) with an A < Client

optional feature (should not 4&
necessarily be visible to
existing clients).

* This excludes the option of /T\
modifying A in-place, which
would be bad anyway
because of OCP.

—=> ()

Alternative Designs

Client

A < Client

Duplication
> . >

23

Combining Composite and Individual Variations

Using some form of multiple inheritance...

class PopupMenuAccel extends PopupMenu, MenuAccel { }
class MenuBarAccel extends MenuBar, MenuAccel { }

class CascadeMenultemAccel extends CascadeMenultem, MenultemAccel {
boolean processKey(KeyStroke ks) {
1f (((PopupMenuAccel) menu).processKey(ks)) return true;
return super.processKey(ks);

¥
¥
class CheckMenultemAccel extends CheckMenultem, MenultemAccel { ... }
class RadioMenultemAccel extends RadioMenultem, MenultemAccel { ... }

24

Summary

* General agreement in the early days of OO:
Classes are the primary unit of organization.

e Standard inheritance operates on isolated classes.

* Variations of a group of classes can be expressed by
applying inheritance to each class from the group
separately.

* Over the years, it turned out that sets of collaborating

classes are also units of organization.
In general, extensions will generally affect a set of related classes.

25

(Single-) Inheritance does not appropriately support
OCP with respect to changes that affect a set of
related classes!

Almost all features that proved useful for single
classes are not available for sets of related

20

Desired/Required Features

* Incremental programming at the level of sets of related classes.
In analogy to incremental programming at the level of
individual classes enabled by inheritance.

(l.e., we want to be able to model the accelerator key feature
by the difference to the default menu functionality.)

* Polymorphism at the level of sets of related classes — Family
polymorphism.
In analogy to subtype polymorphism at the level of individual
classes.
(l.e., we want to be able to define behavior that is polymorphic
with respect to the particular object group variation.)

27

Family Polymorphism

Menu Menu

1 Menultem
. ‘ *| {ordered t

processKey(KeyStroke) : void

itemAt(int) : Menultem accelKey: KeyStroke

. . Menultem
itemCount() : int { fordered) : processKey(KeyStroke) : boolean

addltem(Menultem) : void setAccelerator(KeyStroke) : void

: - on) - voi label: String | | | ===l
addAction(String,Action) : void abel: string ’ | draw(Graphics): void

action : Action I I
| [|
[[
[[

display Text() : String

I PopupMenu I mMmenuBar o+ A ______
draw(Graphics): void [| :
I P U iy 4 P . 4
/T\ | [
f } I I
PopupMenu MenuBar] * {ordered} e T et
I I
{ } : CascadeMenu : CheckMenu 1 : RadioMenu |
: 1 Item : Item : : Item :
*ferderedd 00!t °T] OTTTTTTTTTTTT o ____ I I |
{ordered 1 CascadeMenu CheckMenu RadioMenu
Item Item Item processKey(KeyStroke) : Boolean

28

The Design of AWT and Swing

A small subset of the core of AWT (Component, Container, Frame, Window) and Swing.

ML

Component

Container

/\

2

Button

JComponent

accessibleContext

java.awt
JD Window
Franme f E
A
/[\
javax.swing
JFrame JWindow
rootPane rootPane
accessibleContext accessibleContext
update() : void update() : void
setLayout() : void setLayout() : void
setRootPane() : void setRootPane() : void

update() : void

N

|

JButton

29

AWT Code

public class Container extends Component {
1nt ncomponents;
Component components[] = new Component[Q];

public Component add (Component comp) {
addImpl(comp, null, -1);
return comp;

}

protected void addImpl(Component comp, Object o, int ind) {

component[ncomponents++] = comp;

}

public Component getComponent(int index) {
return component[index];

¥
¥

30

Swing Code

public class JComponent extends Container {

public void paintChildren (Graphics g) {

-) {
getComponent (1);
omp instanceof JComponent); // type check

for (; i>=0 ;
Component comp
1sJComponent =

i-
(c

E(JComponent)comp).getBounds(); // type cast

31

About the Development
of Swing

“In the absence of a large existing base of clients of
AW'L, Swing might have been designed differently, with
AW'T being refactored and redesigned along the way.

Such a refactoring, however, was not an option and we can
witness varous anomalies i Swing, such as duplicated
code, sub-optimal inheritance relationships, and excessiwe
use of run-tume type discrumination and downcasts.”

32

Takeaway

* |Inheritance is a powerful mechanism for supporting
variations and stable designs in presence of change.
Three desired properties:

Built-in support for OCP and reduced need for
preplanning and abstraction building.

Well-modularized implementations of variations.

Support for variation of structure/interface in addition to
variations of behavior.

Variations can participate in type declarations.

33

Takeaway

 |nheritance has also deficiencies

e Variation implementations are not reusable and not easy to
COMpPOSse.

e Code duplication.

* Exponential growth of the number of classes; complex designs.

* |Inheritance does not support dynamic variations — configuring the
behavior and structure of an object at runtime.

* Fragility of designs due to lack of encapsulation between parents
and heirs in an inheritance hierarchy.

* Variations that affect a set of related classes are not well
supported.

34

