
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Strategy Pattern

Winter Semester 17/18

ConcreteStrategyC

«interface»
StrategyContext

ConcreteStrategyBConcreteStrategyA
algorithmInterface() algorithmInterface()algorithmInterface()

algorithmInterface()

The Strategy Pattern in a Nutshell

Intent:

• Define a family of algorithms,

• Encapsulate each one,

• Make them interchangeable at runtime.

ConcreteStrategyC

«interface»
StrategyContext

ConcreteStrategyBConcreteStrategyA
algorithmInterface() algorithmInterface()algorithmInterface()

algorithmInterface()

The Strategy Pattern in a Nutshell

Strategy lets the algorithm vary dynamically and independently
from clients that use it.

ConcreteStrategyC

«interface»
StrategyContext

ConcreteStrategyBConcreteStrategyA
algorithmInterface() algorithmInterface()algorithmInterface()

algorithmInterface()

When to Use the Strategy Pattern

• You need different variants of an algorithm.

• You need to select the variant of an algorithm dynamically.

• You need to be able to support the creation of new variants of the
algorithm.

OCP

You need different variants of an algorithm.
• Strategies can be used when variants of algorithms are implemented as a class hierarchy.
• Many related classes differ only in their behavior rather than implementing different related abstractions

(types).
• Strategies allow to configure a class with one of many behaviors.

You need to select the variant of an algorithm dynamically.
• There are classes in your design that define many behaviors that appear as multiple conditional

statements in its operations.
• Move related conditional branches into a strategy.

Strategy as an  
Alternative to Inheritance
• The Strategy Pattern represents an alternative to modeling

different algorithms (sub-behaviors) as subclasses of a usage
Context.

• Issues related to using inheritance:

1. Inheritance mixes an algorithm‘s implementation with that of
the Context. The Context may become harder to understand,
maintain, extend.

2. Inheritance results in many related classes which only differ
in the algorithm or behavior they employ.

3. When using subclassing we cannot vary the algorithm
dynamically.

5

Encapsulating the algorithm in a Strategy:
• Lets you vary the algorithm independently of its usage context.
• Makes it easier to switch, understand, and extend the algorithm.

(The 2nd issue is particularly painful if Context is parameterized over multiple algorithms.)

IntSortHandle

«interface»
SortHandle

DoubleSortHandle

BubbleSorter

QuickSorter

Strategies

"C
lie
nt
s"

6

Sorting Example with Strategy
BubbleSorter and QuickSorter embody different high-level policies for sorting the elements of a list.
They outsource to SortHandle the decision about the concrete mechanisms for element ordering and
for swapping. SortHandle declares the common interface of low-level sorting mechanisms.
IntSortHandle and DoubleSortHandle implement this interface in different ways.
Not only are sorting policies reusable with (independent of) different ordering and swapping mechanisms;
the latter become reusable with (independent of) different high-level sorting policies.
Furthermore, it is possible to customize the mechanisms dynamically.
Recall the dependency-inversion principle: High-level policies should not depend on low-level
mechanisms. Both should depend on abstractions.

void addLayoutComponent(String name, Component comp)
void removeLayoutComponent(Component comp)
…
void layoutContainer(Container parent)

LayoutManager

void layout()
Component[] getComponents()
void setLayout(LayoutManager)

…

Container

layoutMgr

Concrete Example:
LayoutManager in Swing

class Container extends Component{  
 LayoutManager layoutMgr;  
 …  
 public LayoutManager getLayout() {  
 return layoutMgr;  
 }  
  
 public void layout() {  
 layoutMgr.layoutContainer(this);  
 }  
 …  
}

For illustration, consider Java Containers with dynamically customizable strategies for laying out its
components.

To keep the design open for future extensions, we „outsource“ the variable layout functionality to a
strategy object of type `LayoutManager`.

Container objects hold a reference `layoutMgr` to a Container object and implement operations for
managing this reference.

All operations, whose implementations depend on layout functionality, call specific methods in the
interface of `LayoutManager`.

Functional Counterpart of
Strategies
• One can look at the Strategy pattern as a style for

emulating first-class functions available in functional
programming languages.

• Strategy objects encapsulate sub-computations in first-
class values that can be passed as parameters and
returned as results of other computations (methods).

8

Recall, first-class functions are values that can be passed as parameters and returned as results.

The Cost of the  
Strategy Pattern

9

There are trade-offs to be made to
profit from the advantages of the
Strategy pattern.

These trade-offs must be known and
carefully considered when using the
Strategy.

Footprint of Variations in Base
Functionality
class Container extends Component{  
 LayoutManager layoutMgr;  
 
 public LayoutManager getLayout() {  
 return layoutMgr;  
 }  
  
 public void layout() {  
 layoutMgr.layoutContainer(this);  
 }  
 …  
}

• The field layoutMgr

• Methods to manage strategy objects; e.g., setLayout

• Facade methods forwarding functionality to strategy, e.g.,
layout

10

There may be clients which are not interested in layout functionality. Hence, this can be considered as a
violation of the Interface-Segregation Principle.

Structural Variation is not Supported

• The Strategy interface must fit the needs of all possible
variations of the outsourced feature/algorithm.

• This may lead to bloated („One Size Fits All“) interfaces.
The interfaces might be too complicated for some clients
not interested in sophisticated variations of a feature.

• Careful anticipation of the needs of future variations is
needed when designing the interface.

• Aggravates extensibility.

11

An Example „One Size Fits All“-
Interface
interface ListSelectionModel {  
 int SINGLE_SELECTION = 0;  
 int SINGLE_INTERVAL_SELECTION = 1;  
 int MULTIPLE_INTERVAL_SELECTION = 2;  
 
 /** …  
 * In {@code SINGLE_SELECTION} selection mode,  
 * this is equivalent to calling {@code setSelectionInterval},  
 * and only the second index is used.  
 * In {@code SINGLE_INTERVAL_SELECTION} selection mode,  
 * this method behaves like {@code setSelectionInterval},  
 * unless the given interval is immediately  
 * adjacent to or overlaps the existing selection,  
 * and can therefore be used to grow the selection.  
 * …  
 */  
 void addSelectionInterval(int index0, int index1);  
  
}

12

Consider the list selection feature in Java’s Swing library. This feature is outsourced to the class
ListSelectionModel. The interface of ListSelectionModel is designed to satisfy the needs of the most
flexible selection model (multiple interval selection). As a result, the interface is too complicated for clients
of simpler selection models. See the comments of the methods in the interface.

void addLayoutComponent(String name, Component comp)
void removeLayoutComponent(Component comp)
…
void layoutContainer(Container parent)

LayoutManager

void addLayoutComponent(String name, Object constraints)
…
public void invalidateLayout(Container target)

LayoutManager2

When the „One Size Fits All“-Interface Doesn't fit!  
Example from Java Swing's JComponent

//javax.swing.JComponent - OpenJDK / 6-b14
1804 public float getAlignmentY() {
1805 float yAlign;
1806 if (layoutMgr instanceof LayoutManager2) {
1807 synchronized (getTreeLock()) {
1808 LayoutManager2 lm = (LayoutManager2) layoutMgr;
1809 yAlign = lm.getLayoutAlignmentY(this);
1810 }
1811 } else {
1812 yAlign = super.getAlignmentY();
1813 }
1814 return yAlign;
1815 }

At some point, the designers of the LayoutManager were forced to evolve the interface to satisfy new/
additional requirements posed by tool builders. This required a new interface that inherits from the original
interface. Eventually, type checks and typecasts become necessary and significantly hamper code
comprehension, maintainability, testability, and extensibility.

Communication Overhead
• Some concrete strategies won't use all information passed to them.

• Simple concrete strategies may use none of it.
• Context creates/initializes parameters that never get used.

• If this is an issue, consider using a tighter coupling between Strategy and Context.
Let Strategy know about Context.  
Two Ways of Strategy-Context Interaction:

1. Pass the needed information as a parameter.
• Context and Strategy decoupled.
• Interaction overhead.
• Algorithm can’t be adapted to specific needs of context.

2. Context passes itself as a parameter or Strategy has a reference to its Context.
• Reduced interaction overhead.
• Context must define a more elaborate interface to its data.
• (Much) Close(r) coupling of Strategy and Context.

14

Variations with  
Fixed Interface

15

Strategy objects are effective in
modeling features of an object with
dynamically  
varying implementations  
but  
fixed interfaces.

Increased Number of Objects

To alleviate this problem you may use Stateless Strategies:

• The number of strategy objects can sometimes be reduced by
stateless strategies that several Contexts can share.

• Any state is maintained by Context.

• Context passes the necessary state in each request to the Strategy
object.

• (No / less coupling between Strategy implementations and Context.)

• Shared strategies should not maintain state across invocations.

• Such strategies are Services.
16

Potentially many strategy objects need to be instantiated.

Usually, a stateless strategy is trivially thread-safe, but this is till something that should explicitly be
considered.

Composition of Multiple Variations

E.g., JTable uses Strategies related to cell rendering,
which however may depend on other properties of the cell:
isSelected, isDropTarget/isDragSource.

Such interdependencies between different variation
dimensions cannot be properly modularized using strategy
objects only.

17

Strategy objects cannot be effectively used to
model interdependent variations.

Illustrative example:
The JTable class in Java’s Swing library uses the interface TableCellRenderer to abstract from
different ways in which table cells can be rendered.
But, cell rendering may depend on other kinds of variations of table functionality, e.g., on the presence of
selection or drag-and-drop functionality.
Usually, selected cells and drag-and-drop targets are rendered in a special way.

Takeaway

The core of the Strategy Pattern is to model variability of
object features by outsourcing the implementation of these
features in “helper” (strategy) objects. Exploiting
“implementation to interfaces” and subtype polymorphism
for abstracting over variations of the outsourced feature.

18

The Strategy pattern addresses two problems of inheritance:
• Variations become reusable.
• Dynamic variations of features becomes possible.

Technically, a combination of object composition and inheritance is used instead of inheritance only.

The Strategy pattern has its costs:
• Variations leave a footprint in the base implementation of the object.
• Structural variations are not supported.
• Careful planning of a one-size-fits-all interface is needed.
• Bloated interfaces and interaction overhead between strategy objects and their usage contexts.
• Increased number of objects.
• Multiple interdependent variations not properly supported.

Case Study: Ex- and Implicit Strategies

def sortWith(lt: (A, A) ⇒ Boolean): List[A]
Sorts this sequence according to a comparison function.

def sorted[B >: A](implicit ord: math.Ordering[B]): List[A]
Sorts this sequence according to an Ordering.

def sortBy[B](f: (A) ⇒ B)(implicit ord: math.Ordering[B]): List[A]
Sorts this Seq according to the Ordering which results from transforming an
implicitly given Ordering with a transformation function.

19

scala.collection.immutable.List

Using implicit is very helpful if - in a given context - usually only one concrete
Strategy object exists.

(Here, implicit is used to tell the compiler that it should automatically pass an object of the respective type
to the function if only one such object exist!)

In the first case the strategy needs to be explicitly specified.

In the second case the strategy is chosen implicitly (if available!).

In the third case we need to specify a mapping for the list’s elements A =>B for which the strategy is then
chosen implicitly.

Filing the Design Space between Template and Strategy

trait Component

trait LayoutEngine { def layout(components: Array[Component]) }

trait BasicLayoutEngine extends LayoutEngine {
 def layout(components: Array[Component]) { /*Basic means nothing..*/ }
}

abstract class Container(private val components: Array[Component]) {
 this: LayoutEngine ⇒ // <= Self-type annotation
 def doLayout() { layout(components); }
}

object LayoutEngineDemo extends App {
 val c : Container = new Container(Array()) with BasicLayoutEngine
 //c.layout (won't compile, because C is only of type Container!)
 c.doLayout
 println(c)
}

20

Using mixin-composition and self-type annotations widens
the design space.

Using this approach the solution is type-safe and variations are (still) reusable. However, dynamic
variations of features are no longer possible.

Overall, we have the following advantages:
• LayoutEngine (low-level mechanism) is (still) well modularized and reusable
• Basically no overhead, because we do not have an additional object (as in case of Template Method)
• The interface of Container is not polluted (conforms to the ISP)

and the following disadvantage:
• "strategy" is not dynamically exchangeable

