
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Strategy Pattern

Winter Semester 17/18

ConcreteStrategyC

«interface»
StrategyContext

ConcreteStrategyBConcreteStrategyA
algorithmInterface() algorithmInterface()algorithmInterface()

algorithmInterface()

The Strategy Pattern in a Nutshell

Intent:

• Define a family of algorithms,

• Encapsulate each one,

• Make them interchangeable at runtime.

ConcreteStrategyC

«interface»
StrategyContext

ConcreteStrategyBConcreteStrategyA
algorithmInterface() algorithmInterface()algorithmInterface()

algorithmInterface()

The Strategy Pattern in a Nutshell

Strategy lets the algorithm vary dynamically and independently
from clients that use it.

ConcreteStrategyC

«interface»
StrategyContext

ConcreteStrategyBConcreteStrategyA
algorithmInterface() algorithmInterface()algorithmInterface()

algorithmInterface()

When to Use the Strategy Pattern

• You need different variants of an algorithm.

• You need to select the variant of an algorithm dynamically.

• You need to be able to support the creation of new variants of the
algorithm.

OCP

Strategy as an  
Alternative to Inheritance
• The Strategy Pattern represents an alternative to modeling

different algorithms (sub-behaviors) as subclasses of a usage
Context.

• Issues related to using inheritance:

1. Inheritance mixes an algorithm‘s implementation with that of
the Context. The Context may become harder to understand,
maintain, extend.

2. Inheritance results in many related classes which only differ
in the algorithm or behavior they employ.

3. When using subclassing we cannot vary the algorithm
dynamically.

5

IntSortHandle

«interface»
SortHandle

DoubleSortHandle

BubbleSorter

QuickSorter

Strategies

"C
lie
nt
s"

6

Sorting Example with Strategy

void addLayoutComponent(String name, Component comp)
void removeLayoutComponent(Component comp)
…
void layoutContainer(Container parent)

LayoutManager

void layout()
Component[] getComponents()
void setLayout(LayoutManager)

…

Container

layoutMgr

Concrete Example:
LayoutManager in Swing

class Container extends Component{  
 LayoutManager layoutMgr;  
 …  
 public LayoutManager getLayout() {  
 return layoutMgr;  
 }  
  
 public void layout() {  
 layoutMgr.layoutContainer(this);  
 }  
 …  
}

Functional Counterpart of
Strategies
• One can look at the Strategy pattern as a style for

emulating first-class functions available in functional
programming languages.

• Strategy objects encapsulate sub-computations in first-
class values that can be passed as parameters and
returned as results of other computations (methods).

8

The Cost of the  
Strategy Pattern

9

There are trade-offs to be made to
profit from the advantages of the
Strategy pattern.

These trade-offs must be known and
carefully considered when using the
Strategy.

Footprint of Variations in Base
Functionality
class Container extends Component{  
 LayoutManager layoutMgr;  
 
 public LayoutManager getLayout() {  
 return layoutMgr;  
 }  
  
 public void layout() {  
 layoutMgr.layoutContainer(this);  
 }  
 …  
}

• The field layoutMgr

• Methods to manage strategy objects; e.g., setLayout

• Facade methods forwarding functionality to strategy, e.g.,
layout

10

Structural Variation is not Supported

• The Strategy interface must fit the needs of all possible
variations of the outsourced feature/algorithm.

• This may lead to bloated („One Size Fits All“) interfaces.
The interfaces might be too complicated for some clients
not interested in sophisticated variations of a feature.

• Careful anticipation of the needs of future variations is
needed when designing the interface.

• Aggravates extensibility.

11

An Example „One Size Fits All“-
Interface
interface ListSelectionModel {  
 int SINGLE_SELECTION = 0;  
 int SINGLE_INTERVAL_SELECTION = 1;  
 int MULTIPLE_INTERVAL_SELECTION = 2;  
 
 /** …  
 * In {@code SINGLE_SELECTION} selection mode,  
 * this is equivalent to calling {@code setSelectionInterval},  
 * and only the second index is used.  
 * In {@code SINGLE_INTERVAL_SELECTION} selection mode,  
 * this method behaves like {@code setSelectionInterval},  
 * unless the given interval is immediately  
 * adjacent to or overlaps the existing selection,  
 * and can therefore be used to grow the selection.  
 * …  
 */  
 void addSelectionInterval(int index0, int index1);  
  
}

12

void addLayoutComponent(String name, Component comp)
void removeLayoutComponent(Component comp)
…
void layoutContainer(Container parent)

LayoutManager

void addLayoutComponent(String name, Object constraints)
…
public void invalidateLayout(Container target)

LayoutManager2

When the „One Size Fits All“-Interface Doesn't fit!  
Example from Java Swing's JComponent

//javax.swing.JComponent - OpenJDK / 6-b14
1804 public float getAlignmentY() {
1805 float yAlign;
1806 if (layoutMgr instanceof LayoutManager2) {
1807 synchronized (getTreeLock()) {
1808 LayoutManager2 lm = (LayoutManager2) layoutMgr;
1809 yAlign = lm.getLayoutAlignmentY(this);
1810 }
1811 } else {
1812 yAlign = super.getAlignmentY();
1813 }
1814 return yAlign;
1815 }

Communication Overhead
• Some concrete strategies won't use all information passed to them.

• Simple concrete strategies may use none of it.
• Context creates/initializes parameters that never get used.

• If this is an issue, consider using a tighter coupling between Strategy and Context.
Let Strategy know about Context.  
Two Ways of Strategy-Context Interaction:

1. Pass the needed information as a parameter.
• Context and Strategy decoupled.
• Interaction overhead.
• Algorithm can’t be adapted to specific needs of context.

2. Context passes itself as a parameter or Strategy has a reference to its Context.
• Reduced interaction overhead.
• Context must define a more elaborate interface to its data.
• (Much) Close(r) coupling of Strategy and Context.

14

Variations with  
Fixed Interface

15

Strategy objects are effective in
modeling features of an object with
dynamically  
varying implementations  
but  
fixed interfaces.

Increased Number of Objects

To alleviate this problem you may use Stateless Strategies:

• The number of strategy objects can sometimes be reduced by
stateless strategies that several Contexts can share.

• Any state is maintained by Context.

• Context passes the necessary state in each request to the Strategy
object.

• (No / less coupling between Strategy implementations and Context.)

• Shared strategies should not maintain state across invocations.

• Such strategies are Services.
16

Potentially many strategy objects need to be instantiated.

Composition of Multiple Variations

E.g., JTable uses Strategies related to cell rendering,
which however may depend on other properties of the cell:
isSelected, isDropTarget/isDragSource.

Such interdependencies between different variation
dimensions cannot be properly modularized using strategy
objects only.

17

Strategy objects cannot be effectively used to
model interdependent variations.

Takeaway

The core of the Strategy Pattern is to model variability of
object features by outsourcing the implementation of these
features in “helper” (strategy) objects. Exploiting
“implementation to interfaces” and subtype polymorphism
for abstracting over variations of the outsourced feature.

18

The Strategy pattern addresses two problems of inheritance:
• Variations become reusable.
• Dynamic variations of features becomes possible.

Case Study: Ex- and Implicit Strategies

def sortWith(lt: (A, A) ⇒ Boolean): List[A]
Sorts this sequence according to a comparison function.

def sorted[B >: A](implicit ord: math.Ordering[B]): List[A]
Sorts this sequence according to an Ordering.

def sortBy[B](f: (A) ⇒ B)(implicit ord: math.Ordering[B]): List[A]
Sorts this Seq according to the Ordering which results from transforming an
implicitly given Ordering with a transformation function.

19

scala.collection.immutable.List

Using implicit is very helpful if - in a given context - usually only one concrete
Strategy object exists.

Filing the Design Space between Template and Strategy

trait Component

trait LayoutEngine { def layout(components: Array[Component]) }

trait BasicLayoutEngine extends LayoutEngine {
 def layout(components: Array[Component]) { /*Basic means nothing..*/ }
}

abstract class Container(private val components: Array[Component]) {
 this: LayoutEngine ⇒ // <= Self-type annotation
 def doLayout() { layout(components); }
}

object LayoutEngineDemo extends App {
 val c : Container = new Container(Array()) with BasicLayoutEngine
 //c.layout (won't compile, because C is only of type Container!)
 c.doLayout
 println(c)
}

20

Using mixin-composition and self-type annotations widens
the design space.

