
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Bridge Pattern

Winter Semester 17/18

Motivation by Example

2

We want to support multiple operating systems:

We want to provide different types of windows:

Window

GnomeWindow KDEWindow MacWindow WinWindow

Window

Frame Dialog ...

Abstraction

Implementation

Frame

Window

GnomeWindow

KDEWindow

MacWindow

WinWindow

GnomeFrame

KDEFrame

MacFrame

WinFrame

Motivation by Example
Two dimensions of variability!

3

Can you imagine a better solution?

Several problems:
• Implementation (e.g., GnomeWindow) bound to abstraction (Window)
• Code duplication and proliferation of classes

The Bridge Design
Pattern

4

Decouple an abstraction from its
implementation.
So that the two can vary
independently.

operationImpl()

Implementor

operationImpl()

ConcreteImplementor2

operationImpl()

ConcreteImplementor1

operation()

Abstraction

RefinedAbstraction

«method»
imp.operationImpl();

Client
imp

Bridge Design Pattern - Structure

5

Bridge

Combine inheritance and object composition.

Combine inheritance and object composition:
• Use inheritance to model variations of the abstraction.
• Use object composition to abstract from implementation variations.

The interface defines all methods the client will ever use. I.e., when designing the Implementor interface
we have to foresee the needs of all future clients and the capabilities of future subclasses.

DevDrawLine()

WindowImp

DevDrawLine()

WindowsWindow

DevDrawLine()

MacWindow

drawRect()

Window

Dialog

«method»

imp.DevDrawLine()

;

imp

Bridge Design Pattern - Illustrated

6

Bridge

The Rationale Underlying the Solution:

• Object composition and inheritance provide different trade-offs for expressing variations.
• Object composition is used to implement dynamic variations with a fixed interface. 

Implementation variations are more of this kind; although not always…
• For static variations inheritance is preferred, because it supports structural variations.  

Abstraction variations are mostly static.  
They often imply variation of structure.

DevDrawLine()

WindowImp

DevDrawLine()

WindowsWindow

DevDrawLine()

MacWindow

drawRect()

Window

Dialog

«method»

imp.DevDrawLine()

;

imp

Bridge Design Pattern - Illustrated

7

Inheritance allows structural variaton: adding of new field and methods.

Composition demands a fixed interface.

Bridge
Advantages

Decoupling interface and implementation:
• Implementation can be configured at run-time.
• The implementation in use is hidden inside the abstraction.

Improved extensibility:
• Both abstractions and their implementations become independently extensible by subclassing without

a class proliferation.
• Different abstractions and implementations can be combined.

Takeaway
• The Bridge Pattern instructs to use object composition to

bridge between two inheritance hierarchies when you
need to combine two kinds of variations of an object type.

• The Bridge Pattern allows to vary an abstraction and its
implementation independently of each other.

• Works well as long as there is no dependency between
the implementation on abstraction variations, i.e., if they
do not vary co-variantly.

8

