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Bridge Pattern




Motivation by Example

We want to provide different types of windows:
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We want to support multiple operating systems:
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Motivation by Example

Two dimensions of variability!

Can you imagine a better solution?



I'ne Briage Design
Pattern

Decouple an abstraction from its

Implementation.
So that the two can vary

iINndependently.



Bridge Design Pattern - Structure
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Combine inheritance and object composition.




Bridge Design Pattern - lllustrated
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Bridge Design Pattern - lllustrated
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Inheritance allows structural variaton: adding of new field and methods.

Composition demands a fixed interface.




Takeaway

* [he Bridge Pattern instructs to use object composition to
bridge between two inheritance hierarchies when you
need to combine two kinds of variations of an object type.

* [he Bridge Pattern allows to vary an abstraction and its
implementation independently of each other.

* Works well as long as there is no dependency between
the implementation on albstraction variations, i.e., if they
do not vary co-variantly.



