
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Bridge Pattern

Winter Semester 17/18

Motivation by Example

2

We want to support multiple operating systems:

We want to provide different types of windows:

Window

GnomeWindow KDEWindow MacWindow WinWindow

Window

Frame Dialog ...

Abstraction

Implementation

Frame

Window

GnomeWindow

KDEWindow

MacWindow

WinWindow

GnomeFrame

KDEFrame

MacFrame

WinFrame

Motivation by Example
Two dimensions of variability!

3

Can you imagine a better solution?

The Bridge Design
Pattern

4

Decouple an abstraction from its
implementation.
So that the two can vary
independently.

operationImpl()

Implementor

operationImpl()

ConcreteImplementor2

operationImpl()

ConcreteImplementor1

operation()

Abstraction

RefinedAbstraction

«method»
imp.operationImpl();

Client
imp

Bridge Design Pattern - Structure

5

Bridge

Combine inheritance and object composition.

DevDrawLine()

WindowImp

DevDrawLine()

WindowsWindow

DevDrawLine()

MacWindow

drawRect()

Window

Dialog

«method»

imp.DevDrawLine()

;

imp

Bridge Design Pattern - Illustrated

6

Bridge

DevDrawLine()

WindowImp

DevDrawLine()

WindowsWindow

DevDrawLine()

MacWindow

drawRect()

Window

Dialog

«method»

imp.DevDrawLine()

;

imp

Bridge Design Pattern - Illustrated

7

Inheritance allows structural variaton: adding of new field and methods.

Composition demands a fixed interface.

Bridge

Takeaway
• The Bridge Pattern instructs to use object composition to

bridge between two inheritance hierarchies when you
need to combine two kinds of variations of an object type.

• The Bridge Pattern allows to vary an abstraction and its
implementation independently of each other.

• Works well as long as there is no dependency between
the implementation on abstraction variations, i.e., if they
do not vary co-variantly.

8

