Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik
Technische Universitat Darmstadt

Bridge Pattern

Motivation by Example

We want to provide different types of windows:

Y-S

We want to support multiple operating systems:

<

’

WKW Implementation

- ean e s s s e e e e e g e e e e e e e e e e .y

| | |
GnomeWindow KDEWindow MacWindow WinWindow

Motivation by Example

Two dimensions of variability!

Can you imagine a better solution?

I'ne Briage Design
Pattern

Decouple an abstraction from its

Implementation.
So that the two can vary

iINndependently.

Bridge Design Pattern - Structure
BRIDGE

Abstraction imp Implementor
Client r—= >

operation() e, operationlmpl()
| <<meth3d »
	imp.operationlmpl();	= === —~- e

RefinedAbstraction Concretelmplementor2 Concretelmplementor1

operationimpl() operationimpl()

Combine inheritance and object composition.

Bridge Design Pattern - lllustrated
PRIDGE

WindowImp

Window
drawRect() e

«method»
imp.DevDrawLine()

DevDrawlLine()

| |
WindowsWindow MacWindow
DevDrawlLine() DevDrawlLine()

Bridge Design Pattern - lllustrated
BRIDGE

Window imp o WindowImp
drawRect() e DevDrawlLine()
: « r;ethod » Zl
| imp.DevDrawLine() [m———— e —————— 1
| ; | |
| | |

|
] Dialog | WindowsWindow MacWindow

DevDrawlLine() DevDrawlLine()

Inheritance allows structural variaton: adding of new field and methods.

Composition demands a fixed interface.

Takeaway

* [he Bridge Pattern instructs to use object composition to
bridge between two inheritance hierarchies when you
need to combine two kinds of variations of an object type.

* [he Bridge Pattern allows to vary an abstraction and its
implementation independently of each other.

* Works well as long as there is no dependency between
the implementation on albstraction variations, i.e., if they
do not vary co-variantly.

