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Motivation by Example
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We want to support multiple operating systems:

We want to provide different types of windows:

Window

GnomeWindow KDEWindow MacWindow WinWindow

Window

Frame Dialog ...

Abstraction

Implementation



Frame

Window

GnomeWindow

KDEWindow

MacWindow

WinWindow

GnomeFrame

KDEFrame

MacFrame

WinFrame

Motivation by Example
Two dimensions of variability!
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Can you imagine a better solution?



The Bridge Design 
Pattern
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Decouple an abstraction from its 
implementation.  
So that the two can vary 
independently.
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Bridge Design Pattern - Structure
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Bridge

Combine inheritance and object composition.
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Bridge Design Pattern - Illustrated
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Bridge Design Pattern - Illustrated
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Inheritance allows structural variaton: adding of new field and methods.

Composition demands a fixed interface.

Bridge



Takeaway
• The Bridge Pattern instructs to use object composition to 

bridge between two inheritance hierarchies when you 
need to combine two kinds of variations of an object type. 

• The Bridge Pattern allows to vary an abstraction and its 
implementation independently of each other. 

• Works well as long as there is no dependency between 
the implementation on abstraction variations, i.e., if they 
do not vary co-variantly.
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