
Philipp Haller
KTH Royal Institute of Technology

Stockholm, Sweden

TU Darmstadt, Germany, 25 January, 2018

Futures, Async, and Actors

Philipp Haller

About Myself
• 2006 Dipl.-Inform.  

Karlsruhe Institute of Technology (KIT), Germany

• 2010 Ph.D. in Computer Science 
Swiss Federal Institute of Technology Lausanne (EPFL),
Switzerland

• 2011–2012 Postdoctoral Fellow 
Stanford University, USA, and EPFL, Switzerland

• 2012–2014 Consultant and software engineer 
Typesafe, Inc.

• 2014—present Assistant Professor of Computer Science 
KTH Royal Institute of Technology, Sweden

2

Philipp Haller

Programming a Concurrent World

• How to compose programs handling

• asynchronous events?

• streams of asynchronous events?

• distributed events?

➟ Programming abstractions for concurrency!

3

Philipp Haller

Overview

• Futures and promises

• Async/await

• Actors

4

Philipp Haller

Why a Growable Language for
Concurrency?

• Concurrency not a solved problem ➟ development of
new programming models

5

• Futures, promises

• Async/await

• STM

• Agents

• Actors

• Join-calculus

• Reactive streams

• CSP

• CML

• …Which one is going to “win”?

Philipp Haller

Background

• Authored or co-authored:

• Scala Actors (2006)

• Scala futures and promises (2011/2012)

• Scala Async (2013)

• Contributed to Akka (Typesafe/Lightbend)

• Akka.js project (2014)

6

Other proposals and research
projects:

• Scala Joins (2008)

• FlowPools (2012)

• Spores (safer closures)

• Capabilities and
uniqueness

• …

Philipp Haller

Example

• Common task:

• Convert object to JSON

• Send HTTP request containing JSON

7

import scala.util.parsing.json._

def convert[T](obj: T): Future[JSONType]
def sendReq(json: JSONType): Future[JSONType]

Latency numbers every programmer
should know

L1 cache reference 0.5ns
Branch mispredict 5ns
L2 cache reference 7ns
Mutex lock/unlock 25ns
Main memory reference 100ns
Compress 1K bytes with Zippy 3,000ns
Send 2K bytes over 1Gbps network 20,000ns
SSD random read 150,000ns
Read 1 MB sequentially from memory 250,000ns
Roundtrip within same datacenter 500,000ns
Read 1MB sequentially from SSD 1,000,000ns
Disk seek 10,000,000ns
Read 1MB sequentially from disk 20,000,000ns
Send packet US → Europe → US 150,000,000ns

= 3μs
= 20μs
= 150μs
= 250μs
= 0.5ms
= 1ms
= 10ms
= 20ms
= 150ms

Original compilation by Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

Latency numbers: humanized!

L1 cache reference 0.5 s One heart beat
Branch mispredict 5 s Yawn
L2 cache reference 7 s Long yawn
Mutex lock/unlock 25 s Making a coffee

Main memory reference 100 s Brushing your teeth

Compress 1KB with Zippy 50 min One episode of a
TV show

Seconds:

Minutes:

Latency numbers: humanized!

Send 2KB over 1 Gbps
network 5.5 hr From lunch to end

of work day

Hours:

Days:
SSD random read 1.7 days A normal weekend
Read 1MB sequentially
from memory 2.9 days A long weekend

Round trip within same
datacenter 5.8 days A medium vacation

Read 1MB sequentially
from SSD

11.6 days Waiting almost 2
weeks for a delivery

Latency numbers: humanized!

Months:

Years:

Disk seek 16.5 weeks A semester at
university

Read 1MB sequentially
from disk

7.8 months Almost producing a
new human being

The above 2 together 1 year

Send packet  
US → Europe → US

4.8 years Average time it
takes to complete a
bachelor’s degree

Philipp Haller

Callbacks

• How to respond to asynchronous completion event?

➟ Register callback

12

val person = Person(“Tim”, 25)

val fut: Future[JSONType] = convert(person)

fut.foreach { json =>
 val resp: Future[JSONType] = sendReq(json)
 ..
}

Philipp Haller

Exceptions

• Serialization to JSON may fail at runtime

• Closure passed to foreach not executed in this case

• How to handle asynchronous exceptions?

13

val fut: Future[JSONType] = convert(person)

fut.onComplete {
 case Success(json) =>
 val resp: Future[JSONType] = sendReq(json)
 case Failure(e) =>
 e.printStackTrace()
}

Philipp Haller

Partial Functions

14

{
 case Success(json) => ..
 case Failure(e) => ..
}

… creates an instance of PartialFunction[T, R]:

val pf: PartialFunction[Try[JSONType], Any] = {
 case Success(json) => ..
 case Failure(e) => ..
}

Philipp Haller

Type of Partial Functions

• Partial functions have a type PartialFunction[A, B]

• PartialFunction[A, B] is a subtype of Function1[A, B]

15

trait Function1[A, B] {
 def apply(x: A): B
 ..
}

trait PartialFunction[A, B] extends Function1[A, B] {
 def isDefinedAt(x: A): Boolean
 def orElse[A1 <: A, B1 >: B]
 (that: PartialFunction[A1, B1]): PartialFunction[A1, B1]
 ..
}

Simplified!

Philipp Haller

Success and Failure

16

package scala.util

sealed abstract class Try[+T]

final case class Success[+T](v: T) extends Try[T]

final case class Failure[+T](e: Throwable)  
 extends Try[T]

Philipp Haller

Nested Exceptions

➟ Exception handling tedious and not compositional:

17

val fut: Future[JSONType] = convert(person)

fut.onComplete {
 case Success(json) =>
 val resp: Future[JSONType] = sendReq(json)
 resp.onComplete {
 case Success(jsonResp) => .. // happy path
 case Failure(e1) =>
 e1.printStackTrace(); ???
 }
 case Failure(e2) =>
 e2.printStackTrace(); ???
}

Philipp Haller

Failed Futures

• Future[T] is completed with Try[T], i.e., with success
or failure

• Combinators enable compositional failure handling

• Example:

18

val resp: Future[JSONType] = sendReq(json)
val processed = resp.map { jsonResp =>
 .. // happy path
}

Encapsulates
failure

Philipp Haller

Map Combinator
• Creates a new future by applying a function to the

successful result of the receiver future

• If the function application results in an uncaught
exception e then the new future is completed with e

• If the receiver future is completed with an exception e
then the new future is also completed with e

19

abstract class Future[+T] extends Awaitable[T] {

 def map[S](f: T => S)(implicit ..): Future[S]

 // ..
}

Philipp Haller

Future Composition

20

val fut: Future[JSONType] = convert(person)

val processed = fut.map { json =>
 val resp: Future[JSONType] = sendReq(json)
 resp.map { jsonResp =>
 .. // happy path
 }
}

Encapsulates
all failures

Problem: processed has type

Future[Future[T]]

Philipp Haller

Future Pipelining

Future pipelining: the result of the inner future (result of

map) determines the result of the outer future (processed)

21

val fut: Future[JSONType] = convert(person)

val processed = fut.flatMap { json =>
 val resp: Future[JSONType] = sendReq(json)
 resp.map { jsonResp =>
 .. // happy path
 }
}

Philipp Haller

FlatMap Combinator
• Creates a new future by applying a function to the

successful result of the receiver future

• The future result of the function application determines
the result of the new future

• If the function application results in an uncaught
exception e then the new future is completed with e

• If the receiver future is completed with an exception e
then the new future is also completed with e

22

def flatMap[S](f: T => Future[S])(implicit ..): Future[S]

Philipp Haller

Creating Futures
• Futures are created based on (a) computations, (b) events,

or (c) combinations thereof

• Creating computation-based futures:

23

object Future {

 def apply[T](body: => T)(implicit ..): Future[T]

}
Singleton object

“Code block”
with result type T

“Unrelated”
to the singleton

object!

Philipp Haller

Futures: Example

24

val firstGoodDeal = Future {
 usedCars.find(car => isGoodDeal(car))
}

val firstGoodDeal = Future.apply({
 usedCars.find(car => isGoodDeal(car))
})

Short syntax for:

Type inference:

val firstGoodDeal = Future.apply[Option[Car]]({
 usedCars.find(car => isGoodDeal(car))
})

Type
Future[Option[Car]]

Philipp Haller

Creating Futures: Operationally
• Invoking the shown factory method creates a task object

encapsulating the computation

• The task object is scheduled for execution by an
execution context

• An execution context is capable of executing tasks,
typically using a thread pool

• Future tasks are submitted to the current implicit
execution context

25

def apply[T](body: => T)(implicit
 executor: ExecutionContext): Future[T]

Philipp Haller

Implicit Execution Contexts
Implicit parameter requires selecting a execution context

26

???

an (implicit ec: ExecutionContext) parameter to your method
or import scala.concurrent.ExecutionContext.Implicits.global.
 val fut = Future { 40 + 2 }
 ^

<console>:10: error: Cannot find an implicit ExecutionContext. You might pass

Welcome to Scala 2.12.2 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_..).
Type in expressions for evaluation. Or try :help.

scala> import scala.concurrent._
import scala.concurrent._

scala> val fut = Future { 40 + 2 }
But…

Philipp Haller

Execution Contexts

• Interface for asynchronous task executors

• May wrap a java.util.concurrent.{Executor,
ExecutorService}

27

Philipp Haller

Collections of Futures

28

val reqFuts: List[Future[JSONType]] = ..

val smallestRequest: Future[JSONType] =
 Future.sequence(reqFuts).map(
 reqs => selectSmallestRequest(reqs)
)

Philipp Haller

Promise

Main purpose: create futures for non-lexically-
scoped asynchronous code

29

def after[T](delay: Long, value: T): Future[T]

Example

Function for creating a Future that is completed
with value after delay milliseconds

Philipp Haller

“after”, Version 1

30

def after1[T](delay: Long, value: T) =
 Future {
 Thread.sleep(delay)
 value
 }

Philipp Haller

“after”, Version 1

31

assert(Runtime.getRuntime()
 .availableProcessors() == 8)

for (_ <- 1 to 8) yield
 after1(1000, true)

val later = after1(1000, true)

How does it behave?

Quiz: when is “later” completed?

Answer: after either ~1 s or ~2 s (most often)

Philipp Haller

Promise

32

object Promise {
 def apply[T](): Promise[T]
}

trait Promise[T] {
 def success(value: T): Promise[T]
 def failure(cause: Throwable): Promise[T]

 def future: Future[T]
}

Philipp Haller

“after”, Version 2

33

def after2[T](delay: Long, value: T) = {
 val promise = Promise[T]()

 timer.schedule(new TimerTask {
 def run(): Unit = promise.success(value)
 }, delay)

 promise.future
}

Much better behaved!

Philipp Haller

Futures and Promises: Conclusion

• Scala enables flexible concurrency abstractions

• Futures: high-level abstraction for
asynchronous events and computations

• Combinators instead of callbacks

• Promises enable integrating futures with any
event-driven API

34

Philipp Haller

Overview

• Futures, promises

• Async/await

• Actors

35

Philipp Haller

What is Scala Async?

• Scala module

• "org.scala-lang.modules" %% "scala-async"

• Purpose: simplify programming with futures

• Scala Improvement Proposal SIP-22

• Releases for Scala 2.10, 2.11, and 2.12

• See https://github.com/scala/scala-async/

36

Philipp Haller

What Async Provides

• Future and Promise provide types and operations for
managing data flow

• Very little support for control flow

• Async complements Future and Promise with
constructs to manage control flow

37

Philipp Haller

Programming Model

Basis: suspendible computations

• async { .. } — delimit suspendible computation

• await(future) — suspend computation until

future is completed

38

Philipp Haller

Async

39

object Async {

 def async[T](body: => T): Future[T]

 def await[T](future: Future[T]): T

}

Philipp Haller

Example, Repeated

40

val fut: Future[JSONType] = convert(person)

val processed = fut.flatMap { json =>
 val resp: Future[JSONType] = sendReq(json)
 resp.map { jsonResp =>
 .. // happy path
 }
}

Philipp Haller

Example, Revisited

41

val fut: Future[JSONType] = convert(person)

val processed = async {
 val json = await(fut)
 val resp: Future[JSONType] = sendReq(json)
 val jsonResp = await(resp)
 .. // happy path
}

Philipp Haller

Futures vs. Async

• “Futures and Async: When to Use Which?”, Scala Days
2014, Berlin

• Video:

• Slides:

42

https://www.youtube.com/watch?v=TyuPdFDxkro

https://speakerdeck.com/phaller/futures-and-async-when-to-use-which

https://www.youtube.com/watch?v=TyuPdFDxkro
https://speakerdeck.com/phaller/futures-and-async-when-to-use-which

Philipp Haller

Async in Other Languages

Constructs similar to async/await are found in a
number of widely-used languages:

• C#

• F#

• Dart (Google)

• Hack (Facebook)

• ECMAScript 7 1

43

1 http://tc39.github.io/ecmascript-asyncawait/

http://tc39.github.io/ecmascript-asyncawait/

Philipp Haller

From Futures to Actors

• Limitations of futures:

• At most one completion event per future

• Overhead when creating many futures

• How to model distributed systems?

44

Philipp Haller

The Actor Model
• Model of concurrent computation whose universal primitive is

the “actor” [Hewitt et al. ’73]

• Actors = concurrent “processes” communicating via asynchronous
messages

• Upon reception of a message, an actor may

• change its behavior/state

• send messages to actors (including itself)

• create new actors

• Fair scheduling

• Decoupling: message sender cannot fail due to receiver

45

Related to active objects

Philipp Haller

Example

46

class ActorWithTasks(tasks: ...) extends Actor {
 ...

 def receive = {
 case TaskFor(workers) =>
 val from = sender

 val requests = (tasks zip workers).map {
 case (task, worker) => worker ? task
 }

 val allDone = Future.sequence(requests)

 allDone andThen { seq =>
 from ! seq.mkString(",")
 }
 }
} Using Akka (http://akka.io/)

http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/

Philipp Haller

Anatomy of an Actor (1)
• An actor is an active object with its own behavior

• Actor behavior defined by:

• subclassing Actor

• implementing def receive

47

class ActorWithTasks(tasks: List[Task]) extends Actor {
 def receive = {
 case TaskFor(workers) => // send `tasks` to `workers`
 case Stop => // stop `self`
 }
}

Philipp Haller

Anatomy of an Actor (2)
• Exchanged messages should be immutable

• And serializable, to enable remote messaging

• Message types should implement structural equality

• In Scala: case classes and case objects

• Enables pattern matching on the receiver side

48

case class TaskFor(workers: List[ActorRef])
case object Stop

Philipp Haller

Anatomy of an Actor (3)
• Actors are isolated

• Strong encapsulation of state

• Requires restricting access and creation

• Separate Actor instance and ActorRef

• ActorRef public, safe interface to actor

49

val system = ActorSystem(“test-system”)
val actor1: ActorRef =
 system.actorOf(Props[ActorWithTasks])

actor1 ! TaskFor(List()) // async message send

Philipp Haller

Why Actors?
Reason 1: simplified concurrency

• “Share nothing”: strong isolation of actors  
➟ no race conditions

• Actors handle at most one message at a time 
➟ sequential reasoning

• Asynchronous message handling 
➟ less risk of deadlocks

• No “inversion of control”: access to own state and
messages in safe, direct way

50

“Macro-step semantics”

Philipp Haller

Why Actors? (cont’d)
Reason 2: actors model reality of distributed systems

• Message sends truly asynchronous

• Message reception not guaranteed

• Non-deterministic message ordering

• Some implementations preserve message ordering
between pairs of actors

Therefore, actors well-suited as a foundation for
distributed systems

51

Philipp Haller

Summary

• Concurrency benefits from growable languages

• Futures and promises a versatile abstraction for
single, asynchronous events

• Supported by async/await

• The actor model faithfully models distributed systems

52

