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Programming a Concurrent World

• How to compose programs handling 

• asynchronous events? 

• streams of asynchronous events? 

• distributed events? 

➟ Programming abstractions for concurrency!
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Overview

• Futures and promises 

• Async/await 

• Actors
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Why a Growable Language for 
Concurrency?

• Concurrency not a solved problem ➟ development of 
new programming models
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• Futures, promises 

• Async/await 

• STM 

• Agents 

• Actors

• Join-calculus 

• Reactive streams 

• CSP 

• CML 

• …Which one is going to “win”?
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Background

• Authored or co-authored: 

• Scala Actors (2006) 

• Scala futures and promises (2011/2012) 

• Scala Async (2013) 

• Contributed to Akka (Typesafe/Lightbend) 

• Akka.js project (2014)
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Other proposals and research 
projects: 

• Scala Joins (2008) 

• FlowPools (2012) 

• Spores (safer closures) 

• Capabilities and 
uniqueness 

• …
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Example

• Common task: 

• Convert object to JSON 

• Send HTTP request containing JSON
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import scala.util.parsing.json._ 

def convert[T](obj: T): Future[JSONType] 
def sendReq(json: JSONType): Future[JSONType]



Latency numbers every programmer 
should know

L1 cache reference 0.5ns
Branch mispredict 5ns
L2 cache reference 7ns
Mutex lock/unlock 25ns
Main memory reference 100ns
Compress 1K bytes with Zippy 3,000ns
Send 2K bytes over 1Gbps network 20,000ns
SSD random read 150,000ns
Read 1 MB sequentially from memory 250,000ns
Roundtrip within same datacenter 500,000ns
Read 1MB sequentially from SSD 1,000,000ns
Disk seek 10,000,000ns
Read 1MB sequentially from disk 20,000,000ns
Send packet US → Europe → US 150,000,000ns

= 3μs
= 20μs
= 150μs
= 250μs
= 0.5ms
= 1ms
= 10ms
= 20ms
= 150ms

Original compilation by Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer



Latency numbers: humanized!

L1 cache reference 0.5 s One heart beat
Branch mispredict 5 s Yawn
L2 cache reference 7 s Long yawn
Mutex lock/unlock 25 s Making a coffee

Main memory reference 100 s Brushing your teeth

Compress 1KB with Zippy 50 min One episode of a 
TV show

Seconds:

Minutes:



Latency numbers: humanized!

Send 2KB over 1 Gbps 
network 5.5 hr From lunch to end 

of work day

Hours:

Days:
SSD random read 1.7 days A normal weekend
Read 1MB sequentially 
from memory 2.9 days A long weekend

Round trip within same 
datacenter 5.8 days A medium vacation

Read 1MB sequentially 
from SSD

11.6 days Waiting almost 2 
weeks for a delivery



Latency numbers: humanized!

Months:

Years:

Disk seek 16.5 weeks A semester at 
university

Read 1MB sequentially 
from disk

7.8 months Almost producing a 
new human being

The above 2 together 1 year

Send packet  
US → Europe → US

4.8 years Average time it 
takes to complete a 
bachelor’s degree



Philipp Haller

Callbacks

• How to respond to asynchronous completion event? 

➟ Register callback
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val person = Person(“Tim”, 25) 

val fut: Future[JSONType] = convert(person) 

fut.foreach { json => 
  val resp: Future[JSONType] = sendReq(json) 
  .. 
}
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Exceptions

• Serialization to JSON may fail at runtime 

• Closure passed to foreach not executed in this case 

• How to handle asynchronous exceptions?
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val fut: Future[JSONType] = convert(person) 

fut.onComplete { 
  case Success(json) => 
    val resp: Future[JSONType] = sendReq(json) 
  case Failure(e) => 
    e.printStackTrace() 
}
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Partial Functions
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{ 
  case Success(json) => .. 
  case Failure(e) => .. 
}

… creates an instance of PartialFunction[T, R]:

val pf: PartialFunction[Try[JSONType], Any] = { 
  case Success(json) => .. 
  case Failure(e) => .. 
}
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Type of Partial Functions

• Partial functions have a type PartialFunction[A, B] 

• PartialFunction[A, B] is a subtype of Function1[A, B]
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trait Function1[A, B] { 
  def apply(x: A): B 
  .. 
} 

trait PartialFunction[A, B] extends Function1[A, B] { 
  def isDefinedAt(x: A): Boolean 
  def orElse[A1 <: A, B1 >: B] 
        (that: PartialFunction[A1, B1]): PartialFunction[A1, B1] 
  .. 
}

Simplified!
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Success and Failure
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package scala.util 

sealed abstract class Try[+T] 

final case class Success[+T](v: T) extends Try[T] 

final case class Failure[+T](e: Throwable)  
  extends Try[T]
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Nested Exceptions

➟ Exception handling tedious and not compositional:
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val fut: Future[JSONType] = convert(person) 

fut.onComplete { 
  case Success(json) => 
    val resp: Future[JSONType] = sendReq(json) 
    resp.onComplete { 
      case Success(jsonResp) => .. // happy path 
      case Failure(e1) => 
        e1.printStackTrace(); ??? 
    } 
  case Failure(e2) => 
    e2.printStackTrace(); ??? 
}
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Failed Futures

• Future[T] is completed with Try[T], i.e., with success 
or failure 

• Combinators enable compositional failure handling 

• Example:
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val resp: Future[JSONType] = sendReq(json) 
val processed = resp.map { jsonResp => 
  .. // happy path 
}

Encapsulates 
failure
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Map Combinator
• Creates a new future by applying a function to the 

successful result of the receiver future 

• If the function application results in an uncaught 
exception e then the new future is completed with e 

• If the receiver future is completed with an exception e 
then the new future is also completed with e

19

abstract class Future[+T] extends Awaitable[T] { 

  def map[S](f: T => S)(implicit ..): Future[S] 

  // .. 
}
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Future Composition
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val fut: Future[JSONType] = convert(person) 

val processed = fut.map { json => 
  val resp: Future[JSONType] = sendReq(json) 
  resp.map { jsonResp => 
    .. // happy path 
  } 
}

Encapsulates 
all failures

Problem: processed has type 

Future[Future[T]]
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Future Pipelining

Future pipelining: the result of the inner future (result of 

map) determines the result of the outer future (processed)
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val fut: Future[JSONType] = convert(person) 

val processed = fut.flatMap { json => 
  val resp: Future[JSONType] = sendReq(json) 
  resp.map { jsonResp => 
    .. // happy path 
  } 
}
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FlatMap Combinator
• Creates a new future by applying a function to the 

successful result of the receiver future 

• The future result of the function application determines 
the result of the new future 

• If the function application results in an uncaught 
exception e then the new future is completed with e 

• If the receiver future is completed with an exception e 
then the new future is also completed with e

22

def flatMap[S](f: T => Future[S])(implicit ..): Future[S]
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Creating Futures
• Futures are created based on (a) computations, (b) events, 

or (c) combinations thereof 

• Creating computation-based futures:
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object Future { 

  def apply[T](body: => T)(implicit ..): Future[T] 

}
Singleton object

“Code block” 
with result type T

“Unrelated” 
to the singleton 

object!
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Futures: Example
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val firstGoodDeal = Future { 
  usedCars.find(car => isGoodDeal(car)) 
}

val firstGoodDeal = Future.apply({ 
  usedCars.find(car => isGoodDeal(car)) 
})

Short syntax for:

Type inference:

val firstGoodDeal = Future.apply[Option[Car]]({ 
  usedCars.find(car => isGoodDeal(car)) 
})

Type 
Future[Option[Car]]
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Creating Futures: Operationally
• Invoking the shown factory method creates a task object 

encapsulating the computation 

• The task object is scheduled for execution by an 
execution context 

• An execution context is capable of executing tasks, 
typically using a thread pool 

• Future tasks are submitted to the current implicit 
execution context

25

def apply[T](body: => T)(implicit 
             executor: ExecutionContext): Future[T]
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Implicit Execution Contexts
Implicit parameter requires selecting a execution context

26

???

an (implicit ec: ExecutionContext) parameter to your method 
or import scala.concurrent.ExecutionContext.Implicits.global. 
       val fut = Future { 40 + 2 } 
                        ^

<console>:10: error: Cannot find an implicit ExecutionContext. You might pass

Welcome to Scala 2.12.2 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_..). 
Type in expressions for evaluation. Or try :help. 

scala> import scala.concurrent._ 
import scala.concurrent._ 

scala> val fut = Future { 40 + 2 } 
But…
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Execution Contexts

• Interface for asynchronous task executors 

• May wrap a java.util.concurrent.{Executor, 
ExecutorService}

27
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Collections of Futures

28

val reqFuts: List[Future[JSONType]] = .. 

val smallestRequest: Future[JSONType] = 
  Future.sequence(reqFuts).map( 
    reqs => selectSmallestRequest(reqs) 
  )
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Promise

Main purpose: create futures for non-lexically-
scoped asynchronous code

29

def after[T](delay: Long, value: T): Future[T]

Example

Function for creating a Future that is completed 
with value after delay milliseconds
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“after”, Version 1

30

def after1[T](delay: Long, value: T) = 
  Future { 
    Thread.sleep(delay) 
    value 
  }
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“after”, Version 1

31

assert(Runtime.getRuntime() 
              .availableProcessors() == 8) 

for (_ <- 1 to 8) yield 
  after1(1000, true) 

val later = after1(1000, true)

How does it behave?

Quiz: when is “later” completed?

Answer: after either ~1 s or ~2 s (most often)
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Promise
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object Promise { 
  def apply[T](): Promise[T] 
}

trait Promise[T] { 
  def success(value: T): Promise[T] 
  def failure(cause: Throwable): Promise[T] 

  def future: Future[T] 
}
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“after”, Version 2

33

def after2[T](delay: Long, value: T) = { 
  val promise = Promise[T]() 
   
  timer.schedule(new TimerTask { 
    def run(): Unit = promise.success(value) 
  }, delay) 
   
  promise.future 
}

Much better behaved!
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Futures and Promises: Conclusion

• Scala enables flexible concurrency abstractions 

• Futures: high-level abstraction for 
asynchronous events and computations 

• Combinators instead of callbacks 

• Promises enable integrating futures with any 
event-driven API

34
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Overview

• Futures, promises 

• Async/await 

• Actors

35
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What is Scala Async?

• Scala module 

• "org.scala-lang.modules" %% "scala-async" 

• Purpose: simplify programming with futures 

• Scala Improvement Proposal SIP-22 

• Releases for Scala 2.10, 2.11, and 2.12 

• See https://github.com/scala/scala-async/

36



Philipp Haller

What Async Provides

• Future and Promise provide types and operations for 
managing data flow 

• Very little support for control flow 

• Async complements Future and Promise with 
constructs to manage control flow

37
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Programming Model

Basis: suspendible computations 

• async { .. } — delimit suspendible computation 

• await(future) — suspend computation until 

future is completed

38
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Async
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object Async { 

  def async[T](body: => T): Future[T] 

  def await[T](future: Future[T]): T 

}
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Example, Repeated

40

val fut: Future[JSONType] = convert(person) 

val processed = fut.flatMap { json => 
  val resp: Future[JSONType] = sendReq(json) 
  resp.map { jsonResp => 
    .. // happy path 
  } 
}
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Example, Revisited

41

val fut: Future[JSONType] = convert(person) 

val processed = async { 
  val json = await(fut) 
  val resp: Future[JSONType] = sendReq(json) 
  val jsonResp = await(resp) 
  .. // happy path 
}
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Futures vs. Async

• “Futures and Async: When to Use Which?”, Scala Days 
2014, Berlin 

• Video: 

• Slides: 

42

https://www.youtube.com/watch?v=TyuPdFDxkro

https://speakerdeck.com/phaller/futures-and-async-when-to-use-which

https://www.youtube.com/watch?v=TyuPdFDxkro
https://speakerdeck.com/phaller/futures-and-async-when-to-use-which


Philipp Haller

Async in Other Languages

Constructs similar to async/await are found in a 
number of widely-used languages: 

• C# 

• F# 

• Dart (Google) 

• Hack (Facebook) 

• ECMAScript 7 1

43

1 http://tc39.github.io/ecmascript-asyncawait/

http://tc39.github.io/ecmascript-asyncawait/
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From Futures to Actors

• Limitations of futures: 

• At most one completion event per future 

• Overhead when creating many futures 

• How to model distributed systems?

44
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The Actor Model
• Model of concurrent computation whose universal primitive is 

the “actor” [Hewitt et al. ’73] 

• Actors = concurrent “processes” communicating via asynchronous 
messages 

• Upon reception of a message, an actor may 

• change its behavior/state 

• send messages to actors (including itself) 

• create new actors 

• Fair scheduling 

• Decoupling: message sender cannot fail due to receiver

45

Related to active objects
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Example

46

class ActorWithTasks(tasks: ...) extends Actor { 
  ... 

  def receive = { 
    case TaskFor(workers) => 
      val from = sender 

      val requests = (tasks zip workers).map { 
        case (task, worker) => worker ? task 
      } 
       
      val allDone = Future.sequence(requests) 
       
      allDone andThen { seq => 
        from ! seq.mkString(",") 
      } 
  } 
} Using Akka (http://akka.io/)

http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
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Anatomy of an Actor (1)
• An actor is an active object with its own behavior 

• Actor behavior defined by: 

• subclassing Actor 

• implementing def receive

47

class ActorWithTasks(tasks: List[Task]) extends Actor { 
  def receive = { 
    case TaskFor(workers) =>  // send `tasks` to `workers` 
    case Stop             =>  // stop `self` 
  } 
}
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Anatomy of an Actor (2)
• Exchanged messages should be immutable 

• And serializable, to enable remote messaging 

• Message types should implement structural equality 

• In Scala: case classes and case objects 

• Enables pattern matching on the receiver side
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case class  TaskFor(workers: List[ActorRef]) 
case object Stop
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Anatomy of an Actor (3)
• Actors are isolated 

• Strong encapsulation of state 

• Requires restricting access and creation 

• Separate Actor instance and ActorRef 

• ActorRef public, safe interface to actor

49

val system = ActorSystem(“test-system”) 
val actor1: ActorRef = 
    system.actorOf(Props[ActorWithTasks]) 

actor1 ! TaskFor(List())  // async message send
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Why Actors?
Reason 1: simplified concurrency 

• “Share nothing”: strong isolation of actors  
➟ no race conditions 

• Actors handle at most one message at a time 
➟ sequential reasoning 

• Asynchronous message handling 
➟ less risk of deadlocks 

• No “inversion of control”: access to own state and 
messages in safe, direct way

50

“Macro-step semantics”
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Why Actors? (cont’d)
Reason 2: actors model reality of distributed systems 

• Message sends truly asynchronous 

• Message reception not guaranteed 

• Non-deterministic message ordering 

• Some implementations preserve message ordering 
between pairs of actors 

Therefore, actors well-suited as a foundation for 
distributed systems
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Summary

• Concurrency benefits from growable languages 

• Futures and promises a versatile abstraction for 
single, asynchronous events 

• Supported by async/await 

• The actor model faithfully models distributed systems
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