KTH Royal Institute of Technology
Stockholm, Sweden

gg KTH?; = TU Darmstadt, Germany, 25 January, 2018

59 OCH KONST o

) 9

a%_x‘%o

About Myself

2006 Dipl.-Inform.
Karlsruhe Institute of Technology (KIT), Germany

2010 Ph.D. in Computer Science
Swiss Federal Institute of Technology Lausanne (EPFL),
Switzerland

2011-2012 Postdoctoral Fellow
Stanford University, USA, and EPFL, Switzerland

2012-2014 Consultant and software engineer
Typesafe, Inc.

2014 —present Assistant Professor of Computer Science
KTH Royal Institute of Technology, Sweden

Philipp Haller

Programming a Concurrent World

How to compose programs handling
asynchronous events?
streams of asynchronous events?
distributed events?

= Programming abstractions for concurrency!

Philipp Haller

Overview

Futures and promises
Async/await

Actors

Philipp Haller

Why a Growable Language for
Concurrency?

Concurrency not a solved problem = development of
new programming models

Futures, promises e Join-calculus
Async/await * Reactive streams
STM « CSP

Agents

Actors

Philipp Haller

Background

j,*O’iher p}bposals and research |
. projects:

Authored or co-authored:

Scala Actors (2006)

- Scala Joins (2008)
Scala futures and promisg -

FlowPools (2012)
Scala Async (2013)

Contributed to Akka (Types: Spores (safer closures)

Akka.js project (2014) -+ Capabilities and
unigqueness

|

Philipp Haller 6

Example

Common task:
Convert object to JSON

Send HTTP request containing JSON

import scala.util.parsing.json._

ey ————

def convert[T](obj: T):(Future)ISONType]
def sendReq(json: JSONType)

T(Future)ISONType]

Philipp Haller

Latency numbers every programmer
should know

L1 cache reference 0.5ns

Branch mispredict bns

L2 cache reference ns

Mutex lock/unlock 25ns

Main memory reference 100ns
Compress 1K bytes with Zippy 3,000ns = 3Ms
Send 2K bytes over 1Gbps network 20,000ns = 20ps
SSD random read 150,000ns = 1o0ps
Read 1 MB sequentially from memory 250,000ns = 250us
Roundtrip within same datacenter 500,000ns = 0.oms
Read 1MB sequentially from SSD 1,000,000ns = 1ms
Disk seek 10,000,000ns = 10ms
Read 1MB sequentially from disk 20,000,000ns = 20ms
Send packet US — Europe — US 150,000,000ns = 150ms

Original compilation by Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

Latency numbers: humanized!

Seconds:

L1 cache reference 0.5s One heart beat
Branch mispredict 5s Yawn

L2 cache reference /s Long yawn

Mutex lock/unlock 25 s Making a coffee
Minutes:

Main memory reference 100 s Brushing your teeth
Compress 1KB with Zippy 50 min ="' Spisodeof a

TV show

Latency numbers: humanized!

Hours:

Send 2KB over 1 Gbps From lunch to end
5.5 hr

network of work day

Days:

SSD random read 1.7 days A normal weekend

Read 1MB sequentially 29days A long weekend

from memory

Round trip within same 5.8 days A medium vacation

datacenter

Read 1MB sequentially 11.6 days Waiting almost 2

from SSD

weeks for a delivery

Latency numbers: humanized!

Months:

Disk seek 16.5 weeks A semester at
university

Read 1MB sequentially 7.8 months Almost producing a

from disk new human being

The above 2 together 1 year

Years:

Send packet 4.8 years

US — Europe — US

Average time it
takes to complete a
bachelor’'s degree

Callbacks

How to respond to asynchronous completion event?

= Reqgister callback

val person = Person(“Tim”, 25)

val fut: Future[JSONType] = convert(person)

fut.foreach { json =>
val resp: Future[JSONType] = sendReqg(json)

Philipp Haller

12

Exceptions

. Serialization to JSON may fail at runtime

- Closure passed to foreach not executed in this case

- How to handle asynchronous exceptions?

val fut: Future[JSONType] = convert(person)

fut.onComplete {
case Success(json) =>
val resp: Future[JSONType] = sendReqg(json)
case Failure(e) =>
e.printStackTrace()

Philipp Haller

Partial Functions

{

case Success(json) =>
case Failure(e) =>

}

... Creates an instance of PartialFunction[T, R]:

val pf: PartialFunction[Try[JSONType], Any] = {
case Success(json) =>
case Failure(e) =>

}

Philipp Haller

Type of Partial Functions

* Partial functions have a type PartialFunction[A, B]

* PartialFunction[A, B] isasubtype of Functionl[A, B]

trait Functionl[A, B] { Snnphﬁed!
def apply(x: A): B

¥

trait PartialFunction[A, B] extends Functionl[A, B] {
def isDefinedAt(x: A): Boolean
def orElse[Al <: A, Bl >: B]
(that: PartialFunction[Al, B1]): PartialFunction[Al, B1]

Philipp Haller 15

Success and Failure

package scala.util
sealed abstract class Try|[+T]
final case class Success[+T](v: T) extends Try[T]

final case class Failure[+T](e: Throwable)
extends Try[T]

Philipp Haller

Nested Exceptions

= Exception handling tedious and not compositional:

val fut: Future[JSONType] = convert(person)

fut.onComplete {
case Success(json) =>
val resp: Future[JSONType] = sendReq(json)
resp.onComplete {
case Success(jsonResp) => .. // happy path
case Failure(el) =>
el.printStackTrace(); 7?7
}
case Failure(e2) =>
e2.printStackTrace(); ?72??

Philipp Haller

17

Failed Futures

Future[T] is completed with Try[T], 1.e., with success
or failure

Combinators enable compositional failure handling

Example:

val resp: Future[JSONType] = sendReq(json)
val processed = resp.map { jsonResp =>

. //} happy path

Encapsulates
failure

Philipp Haller

18

Map Combinator

Creates a new future by applying a function to the
successful result of the receiver future

If the function application results in an uncaught
exception e then the new future 1s completed with e

If the receiver future i1s completed with an exception e
then the new future 1s also completed with e

abstract class Future[+T] extends Awaitable[T] {
def map[S](f: T => S)(implicit ..): Futurel[S]

/] ..

}

Philipp Haller

19

Future Composition

val fut: Future[JSONType] = convert(person)

val processed = fut.map { json =>
val [resp: Future[JSONType] = sendReq(json)
res@.map { jsonResp =>

// happy path

Encapsulates |
all failures

Philipp Haller

1 broblem: processed

, Future[Future[T]] |

20

Future Pipelining

val fut: Future[JSONType] = convert(person)

json =>
sendReq(json)

resp.map { jsonResp =>
// happy path

}

}

Future pipelining: the result of the inner future (result of
map) determines the result of the outer future (processed)

Philipp Haller

21

FlatMap Combinator

Creates a new future by applying a function to the
successftul result of the receiver future

The future result of the function application determines
the result of the new future

If the function application results in an uncaught
exception e then the new future 1is completed with e

If the receiver future 1s completed with an exception e
then the new future 1s also completed with e

def flatMap[S](f: T => Future[S]) (implicit ..): Futurel[S]

Philipp Haller 22

Creating Futures

Futures are created based on (a) computations, (b) events,

or (c) combinations thereof

Creating computation-based futures:

object Future {

defYapply[T] (body:(G> T) (implicit ..): Future[T]

=

“Code block”

with result type T

Singleton object

Philipp Haller

“Unrelated”

to the singleton
object!

23

Futures: Example

val firstGoodDeal = Future {
usedCars.find(car => -disGoodDeal(car))

}

Short syntax for:

val firstGoodDeal = Future.apply({
usedCars.find(car Type)

1) Future[Option[Car]]

Type inference:

val firstGoodDeal = Future.apply[Option[Car]] ({
usedCars.find(car => disGoodDeal(car))

})

Philipp Haller

24

Creating Futures: Operationally

- Invoking the shown factory method creates a task object
encapsulating the computation

- The task object is scheduled for execution by an
execution context

- An execution context is capable of executing tasks,
typically using a thread pool

- Future tasks are submitted to the current implicit
execution context

def apply[T] (body: => T) (implicit
executor: ExecutionContext): Futurel[T]

Philipp Haller

25

Implicit Execution Contexts

Implicit parameter requires selecting a execution context

Welcome to Scala 2.12.2 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0 ..).
Type in expressions for evaluation. Or try :help.

scala> import scala.concurrent.
import scala.concurrent.

scala> val fut = Future { 40 + 2 }

<console>:10: erron Cannot flnd an 1mp11c1t EXQCUthhCOhtEX!QD ou m1ght pass“
an (implicit ec: EXecUt 1oNCOMtexty=parameter—to—your Methoc T ——
or import scala.concurrent.ExecutionContext.Implicits.global.
val fut = Future { 40 + 2 }
VAN

Philipp Haller 26

Execution Contexts

Interface for asynchronous task executors

May wrap a java.util.concurrent.{Executor,
ExecutorService}

Philipp Haller

27

Collections of Futures

val reqFuts: List[Future[JSONType]]

val smallestRequest: Future[JSONType] =
Future.sequence(regFuts) .map(
reqs => selectSmallestRequest(reqgs)

)

Philipp Haller

28

Promise

Main purpose: create futures for non-lexically-
scoped asynchronous code

Example

Function for creating a Future that is completed
with value after delay milliseconds

def after[T](delay: Long, value: T): Future[T]

Philipp Haller

29

“after”, Version 1

def afterl[T](delay: Long, value: T) =
Future {
Thread.sleep(delay)
value

}

Philipp Haller

30

“after”, Version 1

How does it behave?

assert(Runtime.getRuntime()
.availableProcessors() ==

for (_ <- 1 to 8) yield
aftterl1(1000, true)

val later = afterl(1000, true)

8)

Quiz: when is “later” completed?

Answer: after either ~1 s or ~2 s (most often)

Philipp Haller

31

Promise

object Promise {

def apply[T](): Promise[T]

}

trait Promise[T] {

def success(value: T):
def failure(cause: Throwable): Promise[T]

def future: Future[T]

Promise|[T]

Philipp Haller

32

“after”, Version 2

def after2[T](delay: Long, value: T) = {
val promise = Promise[T] ()

timer.schedule(new TimerTask {
def run(): Unit = promise.success(value)

}, delay)

promise. future

}

Much better behaved!

Philipp Haller

33

Futures and Promises: Conclusion

- Scala enables flexible concurrency abstractions

- Futures: high-level abstraction for
asynchronous events and computations

« Combinators instead of callbacks

- Promises enable integrating futures with any
event-driven API

Philipp Haller

34

Futures, promises
Async/await

Actors

Overview

Philipp Haller

35

What is Scala Async?

Scala module

"org.scala-lang.modules" %% '"scala-async"

» Purpose: simplify programming with futures

Scala Improvement Proposal SIP-22

« Releases for Scala 2.10, 2.11, and 2.12

See https://github.com/scala/scala-async/

Philipp Haller

30

What Async Provides

- Future and Promise provide types and operations for

managing data flow

- Very little support for control flow

- Async complements Future and Promise with

constructs to manage control flow

Philipp Haller

37

Programming Model

Basis: suspendible computations

async { .. } — delimitsuspendible computation

await(future) — suspend computation until
future 1s completed

Philipp Haller

38

Async

object Async {

def async[T](body: => T): Future[T]

def await[T] (future:

Future[T]): T

Philipp Haller

39

Example, Repeated

val fut: Future[JSONType] = convert(person)

val processed = fut.flatMap { json =>
val resp: Future[JSONType] = sendReqg(json)
resp.map { jsonResp =>

// happy path
}
}

Philipp Haller

40

Example, Revisited

val fut: Future[JSONType] = convert(person)

val processed = async {
val json = await(fut)
val resp: Future[JSONType] = sendReqg(json)
val jsonResp = await(resp)

// happy path

Philipp Haller

41

Futures vs. Async

» "Futures and Async: When to Use Which?”, Scala Days
2014, Berlin

« Video: https://www.youtube.com/watch?v=TyuPdFDxkro

o« Slides: https://speakerdeck.com/phaller/futures-and-async-when-to-use-which

Philipp Haller

42

https://www.youtube.com/watch?v=TyuPdFDxkro
https://speakerdeck.com/phaller/futures-and-async-when-to-use-which

Async in Other Languages

Constructs similar to async/await are found in a
number of widely-used languages:

C#

F#

Dart (Google)
Hack (Facebook)

ECMAScript 71

I http://tc39.github.io/ecmascript-asyncawait/

Philipp Haller

43

http://tc39.github.io/ecmascript-asyncawait/

From Futures to Actors

« Limitations of futures:

- At most one completion event per future

Overhead when creating many futures

- How to model distributed systems?

Philipp Haller

44

The Actor Model

- Model of concurrent computatiq
the "actor” [Hewitt et al. /3]

Related to active objects

« Actors = concurrent "processes’ communicating via asynchronous
messages

« Upon reception of a message, an actor may

- change its behavior/state

- send messages to actors (including itself)

« Create new actors

- Fair scheduling

- Decoupling: message sender cannot fail due to receiver

Philipp Haller

45

Example

class ActorWithTasks(tasks: ...) extends Actor {

def receive = {
case TaskFor (workers) =>
val from = sender

val requests = (tasks zip workers).map {
case (task, worker) => worker ? task

}

val allDone = Future.sequence(requests)

allDone andThen { seq =>
from ! seq.mkString(",")

}
1 e

} g Akka (tp:/ (ka2

Philipp Haller

46

http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/
http://akka.io/

Anatomy of an Actor (1)

- An actor is an active object with its own behavior

- Actor behavior defined by:
* Subclassing Actor

» Implementing def receive

class ActorWithTasks(tasks: List[Task]) extends Actor {
def receive = {
case TaskFor(workers) => // send "tasks +to "workers’
case Stop => // stop self’
}
}

Philipp Haller

47

Anatomy of an Actor (2)

- Exchanged messages should be immutable

- And serializable, to enable remote messaging
- Message types should implement structural equality
- In Scala: case classes and case objects

Enables pattern matching on the receiver side

case class TaskFor(workers: List[ActorRef])
case object Stop

Philipp Haller

Anatomy of an Actor (3)

- Actors are isolated

- Strong encapsulation of state
- Requires restricting access and creation
- Separate Actor instance and ActorRef

- ActorRet public, safe interface to actor

val system = ActorSystem(“test-system”)
val actorl: ActorRef =

system.actorOf (Props[ActorWithTasks])

actorl ! TaskFor(List()) // async message send

Philipp Haller

49

Why Actors?

Reason 1: simplified concurrency

» "Share nothing”: strong 1sOla@l U ETre BT R F s alei
" NO race conditions

- Actors handle at most one message at a time
= Ssequential reasoning

- Asynchronous message handling
- less risk of deadlocks

« NoO "Inversion of control”: access to own state and
messages in safe, direct way

Philipp Haller

50

Why Actors? (cont'd)

Reason 2: actors model reality of distributed systems
- Message sends truly asynchronous
- Message reception not guaranteed

- Non-deterministic message ordering

Some implementations preserve message ordering
between pairs of actors

Therefore, actors well-suited as a foundation for
distributed systems

Philipp Haller

51

Summary

- Concurrency benefits from growable languages

- Futures and promises a versatile abstraction for
single, asynchronous events

Supported by async/await

- The actor model taithfully models distributed systems

Philipp Haller

52

