
Dr.-Ing. Michael Eichberg
eichberg@informatik.tu-darmstadt.de

The Interceptor Architectural Pattern
Pattern-oriented Software Architecture  

Volume 2 Patterns for Concurrent and Networked Objects;  
Douglas Schmidt, Michael Stal, Hans Rohnert and Frank Buschmann, Wiley 2000

(Naïve approaches)

Interceptor Pattern

Goal: Supporting a wide-range of Applications

Integration of all services
‣ Often infeasible, because not all

(required) services can be anticipated 
(Integrating services later on typically
complicates the design and
maintenance.)
‣ Services that are not required still

require resources (memory, processor
cycles) 

Do not provide any services
‣ Application developers that require

services that are not available have to
implement them on their own 
(They have to implement logic not
related to the application domain.)
‣ A couple of services require a tight

integration with the (component)
framework

2

Related Design Principle:

Open-closed design principle

(open for extension, but closed for modifications)

frameworks supporting a...

Forces

Interceptor Pattern

Enabling Service Integration

‣A framework should allow the integration of additional services
without requiring modifications to its core architecture
‣The integration of application-specific services into a framework should

not ...
‣affect existing framework components
‣ require changes to the design or implementation of existing applications
‣Applications that use a framework may need to monitor and control its

behavior

3

Solution

Interceptor Pattern

Enabling Service Integration

‣Allow applications to extend a framework transparently by registering
“out-of-band” services with the framework via predefined interfaces
(interceptor callback interfaces)
‣Trigger these services when “certain” events occur 

(... i.e., when application relevant events occur)

4

Purpose / Goal

Interceptor Pattern

Intent

The interceptor architectural pattern allows services to be added
transparently to a framework and triggered automatically when
certain events occur.

examples are: logging, security, load balancing,...

5

[p. 109; Pattern-oriented Software Architecture Volume 2; D. Schmidt, M. Stal, H. Rohnert and F. Buschmann; Wiley 2000]

Interceptor Pattern

Intercepting Events

Object / Component / Service Object / Component / Service

Security Service Logging Service Logging Service

Security Service

Client-side framework Server-side frameworkNetwork

REQUEST →

6

[p. 115; Pattern-oriented Software Architecture Volume 2; D. Schmidt, M. Stal, H. Rohnert and F. Buschmann; Wiley 2000]

Interceptor Pattern

Collaborations

Concrete

Framework

Context Application

Concrete

Interceptor

Interceptor
List of

Interceptors

Dispatcher

«create»

«use»

«register»

«remove»

List of

Interceptors

Dispatcher

List of

Interceptors

Dispatcher

7

Class

Responsibilities

Collaborations

Concrete Framework

Interceptor Pattern

‣defines application services
‣ integrates dispatchers that

allow applications to intercept
events
‣delegates events to associated

dispatchers

‣Dispatcher

Identifying and Assigning Responsibilities
8

Class

Responsibilities

Collaborations

Interceptor

Interceptor Pattern

‣defines an interface for
integrating out-of-band
services

‣N/A

Identifying and Assigning Responsibilities
9

Class

Responsibilities

Collaborations

Concrete Interceptor

Interceptor Pattern

‣ implements a specific out-of-
band services
‣uses context-object to control

the concrete framework

‣Context Object

Identifying and Assigning Responsibilities
10

Class

Responsibilities

Collaborations

Dispatcher

Interceptor Pattern

‣allows applications to register
and remove concrete
interceptors
‣dispatches registered concrete

interceptor callbacks when
events occur

‣ Interceptor
‣Application

Identifying and Assigning Responsibilities
11

Class

Responsibilities

Collaborations

Context Object

Interceptor Pattern

‣Allows services to obtain
information from the concrete
framework
‣Allows services to control

certain behavior of the
concrete framework

‣Concrete Framework

Identifying and Assigning Responsibilities
12

Class

Responsibilities

Collaborations

Application

Interceptor Pattern

‣Runs atop the concrete
framework
‣ Implements concrete

interceptors and registers them
with dispatchers

‣Dispatcher
‣Concrete Interceptor

Identifying and Assigning Responsibilities
13

Interceptor Pattern

Interaction (Initialization)

:Application
i:Concrete 
Interceptor

:Dispatcher

:Concrete
Framework

«create»
«create»

attach(i)

14

Interceptor Pattern

Interaction (Runtime)

:Application
i:Concrete 
Interceptor

:Dispatcher

:Concrete
Framework

«create»
«create»

attach(i)

«create» event()

callback(o)

o:Context
Object

eventCallback(o)

getValueU() doX()

iterateInterceptors

getValueV() doY()

15

Interceptor Pattern

Implementation Activities

Model the Internal Behavior of the Concrete
Framework

‣Model in particular those aspects related to interception 
(E.g. using state machines.) 
Example states in case of a framework for distributed applications:
‣ initializing
‣marshaling request
‣demarshaling response
‣ ...

16

Interceptor Pattern

Implementation Activities

Identify and Model Interception Points

‣ Identify concrete framework state transitions
‣Partition interception points into reader and writer sets
‣Reader Set: the state transitions in which applications only access

information
‣Writer Set: the state transitions in which applications can modify the

behavior of the concrete framework
‣ Integrate interception points into, e.g., the state machine model by

introducing intermediary sets
‣Partition interception points into disjoint interception groups (of

semantically related interception points)  
For each group design a corresponding Dispatcher and Interceptor
Interface

17

e.g., application shutdown...

Interceptor Pattern

Implementation Activities

Identify and Model Interception Points

Interception Point Description Reader / Writer

shutdown The framework is shutting down. Clients can
intercept this event to, e.g., free resources. Reader

pre marshal out
request

The (client) application sends a request to the
remote object. Interceptors can be used to, e.g.,

encrypt the parameters.
Reader + Writer

...

18

Interceptor Pattern

Implementation Activities

Specify the Context Object

‣Determine the context object’s semantics
‣The information that is made available
‣How an interceptor is expected to control the framework’s behavior 

(Forces: “extensibility” vs. “error proneness”)
‣Determine the number of context object types 

(E.g., (Un)MarshaledRequest)
‣Define how to pass context objects
‣The Context object is passed to an interceptor when the interceptor is

registered
‣The Context object is passed to a concrete interceptor with every

callback invocation

Recall, always ask yourself:

- what is necessary (you don’t need it :-))

- what are my main architectural drivers

- ...

public interface RequestInterceptor {

void onPreMarshalRequest(UnmarshaledRequest context);

void onPostMarshalRequest(MarshaledRequest context);
}

Implementation Activities

Interceptor Pattern

Specify the Interceptors

‣For each interception point define a callback hook method. 
Example:

The interceptor corresponds to the observer participant in the
subject-observer pattern.

20

Interceptor Pattern

Implementation Activities

Specify the Dispatchers

‣Specify the interceptor registration interface 
(Application of the Subject-Observer Design Pattern)
‣Specify the dispatcher callback interface
‣ [If necessary:] To make the dispatching strategy exchangeable /

adaptable apply the strategy pattern

Interceptor Pattern

Implementation Variant - Interceptor proxy

‣Often used on the server-side of a distributed system to intercept remote
operations
‣The concrete framework instantiates a proxy (Proxy Design Pattern) to an

object residing on the server
‣The proxy implements the same interfaces as the object and intercepts

all calls
‣The proxy performs the required service before forwarding the request

to the local server object

22

[cf. p 133; Pattern-oriented Software Architecture Volume 2; D. Schmidt, M. Stal, H. Rohnert and F. Buschmann; Wiley 2000]]

Interceptor Pattern

Component-based application servers...

Uses of the Interceptor Pattern

Client Interceptor

Metadata
(Annotations)

Component

«use»

...

Persistence

Security

Container

Component

Interface Proxy

«delegate»

«reads»

The services that are executed are
determined by the component’s
metadata.

23

Interceptor proxy

Interceptor Pattern

Consequences

‣Extensible and flexible design  
(Open-closed design principle)
‣Separation of concerns; developers can focus on the application logic
‣ Interceptors can be reused across applications
‣Complex design; number of different interceptors?
‣Potential interception cascades if an interceptor changes the behavior of

the concrete framework

24

Dr.-Ing. Michael Eichberg

Components
and

Component-based Software Development
Introduction

an informal characterization

Introduction

Component-Based Software Development

Component-based software development is the developing of software by
assembling pre-built (standard) components.

?

26

Hierarchies help to produce stable
and flexible complexity.
Hierarchic systems are created
much more rapidly from elementary
constituents than non-hierarchic
systems containing the same
number of elements.
[Herber A. Simon; The Sciences of the Artificial; 3rd
edition]

Introduction

Why components?

‣Software is becoming
increasingly large and complex
‣Requirements are changing

frequently; i.e. programs need
to be adapted frequently
‣Systematic reuse is required to

deliver products on time
‣Using “standard products” no

competitive edge can be
achieved
‣Custom-made software is

often too late

Possible components:

a component that provides authorization and authentication functionality 
(often related to non-functional requirements)

a component that calculates the taxes for a product 
(a domain specific component)

a (large-scale) component to render a webpage (e.g. the IE)

GUI widgets are sometimes also considered to be components

... 

27

[Building Reliable Component-Based Software Systems; Ivica Crnkovic and Magnus Larsson eds.; Artech House, 2002]

Introduction

Idea / Goal of
Component-Based Development (CBSD)

To provide support for the development of systems as assemblies of
components.
To support the development of components as reusable entities.
To facilitate the maintenance and upgrading of systems by customizing and
replacing their components.

28

i.e. without recompiling / relinking the application (components)

also used: Component-Based Software Engineering (CBSE)

For a comprehensive overview of definitions
related to the term “component”:  

Component Software - Beyond Object-Oriented
Programming, Second Edition;  
Clemens Szyperski; Addison-Wesley 2002

Introduction

What is a component?
29

[Workshop on Component-oriented Programming (ECOOP 96)]

Introduction

What is a component?
(1st Definition)

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is subject to
composition by third parties.

30

[Clemens Szyperski; Component Software - Beyond Object-Oriented Programming; Second Edition; Addison-Wesley 2002]

Introduction

What is a component?
(2nd Definition)

A software component is what is actually deployed - as an isolatable part of
a system - in a component-based approach.
Characteristic properties of components:

• is a unit of independent deployment;
• is a unit of third-party composition;
• has no (externally) observable state, 

i.e. two copies of the same component have the same properties.

31

Separation of data (mutable instances) from the “plan”

commonalities and differences

Introduction

Lego “components” are concrete products

Software vs. Hardware Components

Recall:  
(e.g. from “Introduction to Software Engineering” or
“Software Engineering Design and Construction”)
‣Software is different from products

in all other engineering disciplines
‣Delivering software means

delivering the blueprint for
products
‣Computers instantiate these

blueprints; computers are factories
‣A blueprint can be parameterized,

instantiated multiple times,...

A lego “component” is a concrete
instantiation of a blueprint - a
software component is the blueprint.

32

[Heineman and Councill; Component-Based Software Engineering - Putting the Pieces Together; Addison-Wesley 2001]

Introduction

What is a component?
(3rd Definition - Software Component)

A software component is a software element that conforms to a
component model(...) and can be independently deployed and composed
without modification according to a composition standard.

33

(Part I)

[Heineman and Councill; Component-Based Software Engineering - Putting the Pieces Together; Addison-Wesley 2001]

Introduction

What is a component?
(3rd Definition - Component Model)

A component model defines a specific interaction and composition
standard.
A component model implementation is the dedicated set of executable
software elements required to support the execution of components that
conform to the model.

34

(Part II)

[Völter, Schmid, Wolff; Server Component Patterns; Wiley 2002]

Introduction

What is a component?
(4th Definition)

[...] While all these uses of the term component are valid [...] let’s add
additional properties to the definition:

• A component is coarse-grained.
• They require a run-time environment.
• Remotely accessible.

[...] this set of properties of components fits the so-called distributed, or
server-side components[...].

35

Introduction

Elements of a Component

It has an implementation

It has a
specification

It can be deployed

It can be
packaged

It conforms to a
standard

36

a specification

Introduction

Elements of a Component

‣Abstract description of services provided /
required by the component
‣A contract between provider and clients
‣Usually more than the list of operations
‣Expected behavior of a component instance

for specific situations
‣Constrains the allowable states of the

component instance
‣Guide clients in appropriate interactions with

the component instance (the order of
interactions)

‣ In some cases formal, but most informal

37

an implementation

Introduction

Elements of a Component

‣One or more implementations
‣Must conform to specification
‣Specification allows a number of degrees of

freedom on the internal operation of the
component
‣May be an existing system wrapped in such a

way that its behavior conforms to the
specification defined within the constraining
component standard

38

Often the case for Webservices that wrap legacy systems.

a packaging approach

Introduction

Elements of a Component

‣Components can be grouped in different ways
to provide a replaceable set of services
‣Typically these are packages that are bought

and sold when acquiring components from third
parties
‣Each package provides a unit of functionality to

be installed in the system
‣Some sort of registration of the package within

the component model is expected (registry)

39

a deployment approach

Introduction

Elements of a Component

‣Once installed a packaged component will be
deployed
‣Delopyment means creating an executable

instance of a component and allowing
interactions with it to occur
‣A component may be deployed multiple times;

each instance is unique 

40

a standard

Introduction

Elements of a Component

‣A set of standard services that can be
assumed by components and assemblers
of component-based systems
‣E.g., directory services, security, transaction

management, scripting, etc.
‣The services are provided to components in a

transparent way 
Components do not need to explicitly call the services.

‣A set of rules that must be obeyed by the
component in order for it to take advantage of
the services transparently

41

[p. 12, Clemens Szyperski; Component Software - Beyond Object-Oriented Programming, Addison-Wesley 2002]

Introduction

Developing Components

A component has to have a […] large number of uses [...] for it to be
viable.
As a rule of thumb, most components need to be used three times before
breaking even.
[...] two separate, from-scratch development efforts are still cheaper than a
single effort to produce a more generic component.

42

Introduction

Summary

Components have to have...
‣ ...clearly defined interfaces:
‣components support a provided interface
‣a component needs a required interface if the component requests an

interaction defined in that interface
‣ ...an interaction standard that covers all interactions that may exist

between components; it specifies the explicit context dependency a
component may have
‣ ...a component model that defines:
‣how to construct a component,
‣how to deploy a component,
‣how components have to interact (the interaction standard)

Hence, an interface standard is required that declares what
can comprise an interface.

43

Another component has to support that interface.

Dr.-Ing. Michael Eichberg

Software Component Infrastructures
Introduction

[Steve Latchem, Component Infrastructures: Placing Software Components in Context; in Component-Based Software
Engineering, Addison Wesley 2001]

Component Infrastructures - Definition

Purpose of
Software Component Infrastructures

The purpose of a component infrastructure is to separate responsibilities
and to ensure that logical connections between components do not result
in unnecessary coupling.

The component implements the functional
concerns while the component infrastructure
provides the non-functional concerns.

45

[Componentware, Frank Griffel,dpunkt.verlag 1998]

Component Infrastructures - Definition

Properties of
Software Component Infrastructures

A software component infrastructure should possess the following
properties or enable components to provide:

• location transparency - a component should be useable independently of
its location (within the same process, another process, a different
computer,…).

46

This is not strictly required.

[Componentware, Frank Griffel,dpunkt.verlag 1998]

Component Infrastructures - Definition

Properties of
Software Component Infrastructures

A software component infrastructure should possess the following
properties or enable components to provide:

• strict separation of interface and implementation. 
 
 

In EJB it was a best practice not to implement the interface directly!

(This, however, violates common best practices and - in particular - renders refactoring tools useless!)

47

[Componentware, Frank Griffel,dpunkt.verlag 1998]

Component Infrastructures - Definition

Properties of
Software Component Infrastructures

A software component infrastructure should possess the following
properties or enable components to provide:

• a self-describing interface - to enable a better reuse and to enable runtime
discovery of a component, a component should provide extensive
information about the provided functionality and how it can be accessed.

48

[Componentware, Frank Griffel,dpunkt.verlag 1998]

Component Infrastructures - Definition

Properties of
Software Component Infrastructures

A software component infrastructure should possess the following
properties or enable components to be:

• composable - i.e. components should be composable and integrable to
form new components. 
 

49

Dr.-Ing. Michael Eichberg

Designing
Software Component Infrastructures

[Len Bass, Software Architecture Design Principles; in Component-Based Software Engineering, Addison Wesley 2001]

Designing Component Infrastructures

Designing Software Component Infrastructures

When designing the software component infrastructure, you must have a
base set of applications in mind.

e.g., Enterprise Applications or Smart
Homes,...

51

[Len Bass, Software Architecture Design Principles; in Component-Based Software Engineering, Addison Wesley 2001]

Designing Component Infrastructures

Designing Software Component Infrastructures

During design the architectural drivers have to be identified, e.g.,
maintainability and extendibility, performance, throughput, reuse...

52

[Len Bass, Software Architecture Design Principles; in Component-Based Software Engineering, Addison Wesley 2001]

Designing Component Infrastructures

Designing Software Component Infrastructures

Only the externally visible functions and behavior of the components
become part of the design of the software component infrastructure.

E.g., if we want to have components that represent sessions, we have to identify /
specify the expected behavior of all these components and to develop functionality to
support such components.

53

[Len Bass, Software Architecture Design Principles; in Component-Based Software Engineering, Addison Wesley 2001]

Designing Component Infrastructures

Designing Software Component Infrastructures

The software component infrastructure embodies the fundamental
tradeoffs and decisions made during design, which are recorded as design
rules.

Quality Attribute Architectural Mechanism

Modifiability Separation, Indirection

Reliability Redundancy

... ...

54

Related class design principles: Open-closed principle...

[Len Bass, Software Architecture Design Principles; in Component-Based Software Engineering, Addison Wesley 2001]

Designing Component Infrastructures

Designing Software Component Infrastructures

To determine the shared services to be implemented within the software
component infrastructure, the base set of applications must be at least
partially designed; the software component infrastructure can not be
designed in isolation.

e.g., security, logging, transactions, passivation, pooling,...

55

[Steve Latchem, Component Infrastructures: Placing Software Components in Context; in Component-Based Software
Engineering, Addison Wesley 2001]

Designing Component Infrastructures

Designing Software Component Infrastructures

[…] it is important to design component infrastructures following the
principle of separating concerns.

Separating concerns between the infrastructure and the
components that will use it!

56

[Len Bass, Software Architecture Design Principles; in Component-Based Software Engineering, Addison Wesley 2001]

Designing Component Infrastructures

Designing Software Component Infrastructures

[In case of CBSD:] Software architecture [is used to] refer to a specific
software component infrastructure with an associated set of design rules.

57

rules & implementation restrictions

Designing Component Infrastructures

Designing Software Component Infrastructures

‣Rules are conventions about naming methods, how to specify metadata,
etc.
‣ In addition, the container has to make certain assumptions about the

behavior of components in order to control their life cycle 
E.g., how to manage synchronization if components would create threads.
‣Hence, the container imposes implementation restrictions on component

implementations 
E.g., threading restrictions, presence of GUI, assumptions about locality, etc.

58

rules & implementation restrictions

Designing Component Infrastructures

Designing Software Component Infrastructures

‣many restrictions which components have to
follow cannot be enforced, neither statically
nor dynamically
‣Saying: “…if you follow the rules of the

component framework and obey its
implementation restrictions, your components
will be transactional, secure, …, and will run in
all servers that implement the architecture …”

59

!

Dr.-Ing. Michael Eichberg

Basic Building Blocks of
Software Component Infrastructures

Server Component Patterns;  
Markus Völter, Alexander Schmid, Eberhard Wolff;  

Wiley 2002

Building Blocks of Component Infrastructures / Terminology

Component

‣Decompose an application’s
functionality in distinct
components
‣A component is responsible for

providing one part of the overall
functionality
‣A component implements its

responsibilities without introducing
strong dependencies
‣A component should exhibit:
‣high cohesion, and
‣ loose coupling

61

A component should NEVER depend on the
internals of another component.

other way round: components (typically) implement
the functional requirements

«component»

Feature1Comp

Feature 1

Feature 4

Feature 3

Feature 2

«component»

Feature2Comp

«component»

Feature4Comp

«component»

Feature3Comp

Building Blocks of Component Infrastructures / Terminology

Building Blocks that Make Up Components

‣Clients access components
through the component’s
interface
‣The component implementation

is the implementation of the
functional requirements
‣ “Annotations” are used to tell the

container which technical
concerns should be added to
them

62

this line type (A •- B) means: “A provides context for
B” (i.e. we can have A without B, but not the other way
round.)

Component

Container
Lifecycle

Callback

Component

Interface

Implementation

Restrictions

Component

Implementation
Annotations

Building Blocks of Component Infrastructures / Terminology

Component Interface

‣The interface defines what a component does
and not how; it serves as a contract between
client and component
‣The operations provided by the component

and their signatures
‣ Ideally, it defines the semantics of a

component
‣Using the interface it is possible to decouple

components (implementations)
‣An explicit component interface makes it

possible to have multiple implementations; to
evolve components independently of each
other

63

Component

Container
Lifecycle

Callback

Component

Interface

Implementation

Restrictions

Component

Implementation
Annotations

Component

Client

component proxy

Building Blocks of Component Infrastructures / Terminology

Component Implementation

‣Provides operations to
instantiate a component 
(Sometimes defined by a - so
called - component home
interface.)
‣ Implements lifecycle callback

operations
‣The component implementation

should be separate from the
component interface  
It is the job of the container to attach a
component interface to the component.

This is not always strictly required... it depends on the technical concerns that
are / may be provided by the container.

64

Component

Container
Lifecycle

Callback

Component

Interface

Implementation

Restrictions

Component

Implementation
Annotations

Container

Component

Component

Implementation
Client

c
o

m
p

o
n
e
n
t

in
te

rf
a
c
e

lifycycle
callback

operations

component
home

operations

Cart shoppingCart = home.create("Duke DeEarl", "123"); // usage scenario

import javax.ejb.EJBHome;
public interface CartHome extends EJBHome {
 Cart create(String person) throws RemoteException, CreateException;
 Cart create(String person, String id) throws RemoteException, CreateException;
}

// Bean Implementation
public void ejbCreate(String person, String id) throws CreateException {  
 // initialize bean  
}

Example (J2EE 1.4 - EJB Home Interface for Session Beans)

Building Blocks of Component Infrastructures / Terminology

Component Home Operations

‣ [For a session bean,] the purpose of the home interface is to define the
create methods [that a remote client can invoke].  
(The container creates the component instances.)

65

Component

Container
Lifecycle

Callback

Component

Interface

Implementation

Restrictions

Component

Implementation
Annotations

Building Blocks of Component Infrastructures / Terminology

Annotations

‣Annotations are used to configure
the technical concerns that are
required 
The container (the component’s
runtime environment) provides the
implementation.
‣Annotations are used to configure

the container, e.g.
‣ transaction handling
‣ security
‣ ...

The container cannot guess which non-functional
concerns are required.

Specifications of the configurations for the
non-functional concerns should not pollute
the component’s implementations.

66

Annotations are used to declaratively
specify which technical concerns are
required and how.

Component

Container
Lifecycle

Callback

Component

Interface

Implementation

Restrictions

Component

Implementation
Annotations

Container

Component

Component

Implementation
Client

c
o
m

p
o
n
e
n
t

in
te

rf
a
c
e

"proxy"
generated

by the
container

Annotations for
• security
• naming
• threading

...

@TransactionAttribute(NOT_SUPPORTED) @Stateful
public class TransactionBean implements Transaction {

 @TransactionAttribute(REQUIRES_NEW)
 public void firstMethod() {...}

 @TransactionAttribute(REQUIRED)
 public void secondMethod() {...}

 public void thirdMethod() {...}
 public void fourthMethod() {...}
}

Example

Building Blocks of Component Infrastructures / Terminology

Annotations

‣The TransactionBean class’s transaction attribute (part of Java EE > 5)
is NotSupported, firstMethod’s transaction attribute is RequiresNew,
and secondMethod’s attribute is Required.
‣A method-level attribute overrides a class-level attribute

67

Component

Container
Lifecycle

Callback

Component

Interface

Implementation

Restrictions

Component

Implementation
Annotations

Building Blocks of Component Infrastructures / Terminology

Implementation Restrictions

‣The runtime environment (has to) makes certain assumptions about the
behavior of the components
‣These assumptions result in implementation restrictions that components

have to follow
‣The specific implementation restrictions vary widely and can be related to

the use of specific APIs or programming language features

68

Component

Container
Lifecycle

Callback

Component

Interface

Implementation

Restrictions

Component

Implementation
Annotations

fundamental building blocks

Building Blocks of Component Infrastructures / Terminology

Core Infrastructure Elements

‣A component implements some
well-defined functionality
‣The container provides a run-

time environment for
components, adding the technical
concerns

69

Component types typically found when developing distributed
enterprise applications.

this line type means: “specialization”.

this line type (A •- B) means: “A provides context for
B” (i.e. we can have A without B, but not the other way
round.)

Entity

Component

Session

Component

Service

Component

Component Container

Separation of

Concerns

Functional

Variability

Container

Building Blocks of Component Infrastructures / Terminology

Core Infrastructure Elements

‣The container provides the
technical concerns and
integrates the components
‣Conceptually, a container wraps

the components, giving clients the
illusion of tightly-integrated
functional and non-functional
concerns

70

Container

C
o
m
p
o
n
e
n
t

C
o
m
p
o
n
e
n
t

C
o
m
p
o
n
e
n
t

C
o
m
p
o
n
e
n
t

Client(s)

Container

Building Blocks of Component Infrastructures / Terminology

Core Infrastructure Elements

‣Typically, one container exists
for each component type
‣The container controls the

lifecycle of the component
instances

71

Container

C
o
m
p
o
n
e
n
t

C
o
m
p
o
n
e
n
t

C
o
m
p
o
n
e
n
t

C
o
m
p
o
n
e
n
t

Client(s)

Building Blocks of Component Infrastructures / Terminology

Lifecycle Callback Operations

‣Components - at least - need to
be initialized and destroyed
(lifecycle management)
‣Lifecycle operations are often

responsible to acquire and
release resources
‣The lifecycle callback operations

are called at well-defined points
during the life-cycle
‣The lifecycle operations depend on

the type of components

Additional states:

- pre-init

- pre-destroy

- before passivation

- passivated

- after passivation

- pooled

- ...

72

Component

Container
Lifecycle

Callback

Component

Interface

Implementation

Restrictions

Component

Implementation
Annotations

does not

exist
ready

...

...

...

The Life Cycle of a Java EE 5 Stateful Session Bean

http://java.sun.com/javaee/5/docs/tutorial/doc/bnbmt.html#bnbmu

Building Blocks of Component Infrastructures / Terminology

Example

Lifecycle Callback Operations
73

Does Not
Exist

Ready Passive

1. create
2. dependency injection, if any
3. PostConstruct callback, if any
4. Init method, or ejbCreate method, if any

1. Remove
2. PreDestroy, if any

1. PostActivate callback, if any

1. PrePassivate callback, if any

Building Blocks of Component Infrastructures / Terminology

A Component and its Environment

‣Components cannot exist completely on their own - they have to be given
access to external resources
‣Generally, components are not responsible for the implementation of

technical concerns, but they might need to control some aspects of them
at run time (without compromising the integrity of the CONTAINER.)

74

The Container provides a Component Context to each Component Instance. This context object’s interface provides operations
for accessing resources, security information,…. It can also include the possibility of accessing other parts of the component’s
environment.

Building Blocks of Component Infrastructures / Terminology

Component Context

A Component and its Environment
75

Container

Client

Component

Component
Implementation

Component
Context

Resources

current
transaction

security
context

Initialization

Building Blocks of Component Infrastructures / Terminology

Component Context

A Component and its Environment
76

«create»

:Container

:ApplicationServer

«create»

:Component

:ComponentContext«create»

setContext(aCtx) storeContext()

Runtime

Building Blocks of Component Infrastructures / Terminology

Component Context

A Component and its Environment
77

getCallerCredentials()

:Component
Context

:Component :Transaction :SecurityInformation

getTransaction()

commit()

getSecurityInfo()

abortTransaction()

Dr.-Ing. Michael Eichberg
eichberg@informatik.tu-darmstadt.de

OSGi

About OSGi

OSGi

OSGi

The OSGi specifications define a standardized, component oriented,
computing environment for networked services that is the foundation of
an enhanced service oriented architecture.

79

[Technical Whitepaper, Rev. 4.1, OSGi Alliance, November 2005]

OSGi

OSGi

The OSGi Service Platform is a Java based application server for networked
devices...

80

[from the OSGi Website (April 2007)]

OSGi

OSGi

The OSGi Service Platform is […] considered to be the cheapest, fastest
and easiest way to enable the dynamic deployment of Web 2.0 services
and mashups in the next generation Java Service Platform.

81

The business perspective:

[About the OSGi Service Platform; OSGi Alliance, November 2005]

OSGi

OSGi

The OSGi specifications [...] form a small layer that allows multiple, Java
based, components to efficiently cooperate in a single Java Virtual
Machine.

82

The technical perspective:

OSGi

Scope of the OSGi Specifications

‣A standard […] software component framework for manufactures, service
providers, and developers.
‣A model for co-existence of different components / applications in a

single JVM...
‣A cooperative model where applications can dynamically discover and

use services provided by other applications running inside the same OSGI
Service Platform.

83

OSGi

Scope of the OSGi Specifications

‣A […] deployment Application Programming Interface (API) that controls
the life-cycle of applications.
‣A secure environment that executes applications in a sandbox so that

these applications cannot harm the environment, nor interfere with other
resident applications.
‣A number of standardized, optional services: Logging, Configuration, […]

84

Definition of “Component”

OSGi

OSGi

Software components are libraries or
applications that can dynamically discover and
use other components.

85

i.e. each component has to define which other services (components) the component
requires and / or provides!

Design of the Platform

OSGi

OSGi

Main drivers for the design of the
OSGi Service Platform:
‣ 24/7 operation
‣ deployable on embedded systems 

Resulting design decisions:
‣ dynamism; i.e. starting, stopping and

updating / replacing services must be
possible at runtime
‣ memory consumption has to be

minimized; running multiple
applications in a single JVM must be
supported

86

OSGi

OSGi - an Overview

Several implementations of the
standard exist; available “Service
Platforms”:
‣ Gatespace Telematics Knopflerfish  

www.knopflerfish.org
‣ ProSyst Software mBedded Server  

www.prosyst.com
‣ Eclipse Equinox  

www.eclipse.org/equinox/

‣ Apache Felix  
felix.apache.org  

Wide adoption of the OSGi
specification and OSGi
specification based products:
‣ Nokia
‣ Siemens
‣ BMW
‣ Volvo
‣ Cisco
‣Wind River
‣ Bombardier
‣ 	...

e.g. BMW uses the OSGi specifications as the base

Spring, GlassFish … have also adopted OSGi

87

http://www.gatespacetelematics.com
http://www.prosyst.com
http://www.eclipse.org/equinox/
http://www.eclipse.org/equinox/

OSGi Adoption

Glassfish v3 uses Apache Felix OSGi
88

Standard Components and Services

OSGi

OSGi

‣Log Service
‣Http Service
‣Device Access
‣Preferences Service
‣User Admin Service
‣Wire Admin Service
‣XML Parser Service
‣Event Admin Service
‣ ...

In general,
these are
only basic
services!

89

OSGi

Functionality of the OSGi Framework

The framework is the core of the OSGi Service Platform Specifications
and provides a ...
‣general-purpose,
‣ secure and
‣managed
Java framework that supports the deployment of extensible
applications (bundles).

90

Building Blocks/“Layers” of the Framework

OSGi

Functionality of the OSGi Framework

‣Security Layer  
...provides the infrastructure to deploy and manage applications that must
run in controlled environments.
‣Module Layer 

...supports packaging, deploying, and validating Java-based applications
and components
‣Life Cycle Layer 

...provides an API to control the security and life cycle operations of
bundles.
‣Service Layer  

...defines a dynamic collaborative model. The service model is a publish,
find and bind model.
‣Actual Services

91

Layers of the Framework (main focus of this lecture)

OSGi

Functionality of the OSGi Framework

‣Security Layer  
...provides the infrastructure to deploy and manage applications that must
run in controlled environments.
‣Module Layer  

...supports packaging, deploying, and validating Java-based applications
and components
‣Life Cycle Layer  

...provides an API to control the security and life cycle operations of
bundles.
‣Service Layer  

...defines a dynamic collaborative model. The service model is a publish,
find and bind model.
‣Actual Services

92

(Further details can be found in the OSGi core specification.)

OSGi

Security Layer

‣The layer is based on the Java 2 security architecture and targets
code authentication:
‣by location
‣by signer
‣This information is used to grant permissions based on the authenticated

principal or to restrict the set of bundles that can be managed by another
bundle
‣Signing is based on Java2 JAR signing and uses public key cryptography
‣The security layer is optional. (i.e. it is possible to implement the

interfaces using stubs and to grant all bundles all permissions)

93

(Details regarding native code loading can be found in the OSGi core specification.)

OSGi

Module Layer: Bundles

‣The unit of modularization is called a bundle
‣A bundle is comprised of all resources, that together can provide

functions to end users
‣Bundles can share Java packages among an exporter bundle and an

importer bundle in a well-defined way
‣Bundles are the only entities for deploying Java-based applications

94

(Details regarding native code loading can be found in the OSGi core specification.)

OSGi

Module Layer: Bundles

‣A bundle is deployed as a Java ARchive (JAR) file which contains:
‣ resources 

(Including possibly further Jar files; non recursive.)
‣ the manifest file 

(META-INF/MANIFEST.MF)  
describing
‣ the content
‣how to install and activate the bundle

‣After a bundle is started its services are exposed to other installed
bundles

95

OSGi

Example of a bundle’s content

Module Layer: Bundles
96

org.eclipse.jdt.junit4.runtime_1.0.1.r321_v20060905

plugin.xmlMETA-INF

MANIFEST eclipse

org

eclipse/jdt/
internal/
junit4/
runner

JUnit4
Identifier

JUnit4
TestClass
Reference

JUnit4Test
Listener$
Ignored

TestIdentifier

JUnit4
TestListener

JUnit4
TestLoader

JUnit4
TestMethod
Reference

JUnit4
Test

Reference$1

JUnit4
Test

Reference

plugin.
properties

about.html

API for handling the life-cycle management of applications and components.

OSGi

Life Cycle Layer

An OSGi service platform provides the following functions:
‣ Install a bundle
‣Start / stop a bundle
‣Update a bundle 

The OSGi platform stops existing applications, resources are cleaned up,
code is unloaded, code is replaced, bundle is restarted.
‣Uninstall a bundle
‣Monitoring a bundle

97

Entities of the OSGi layer.

OSGi

Life Cycle Layer

‣Bundle 
Represents an installed bundle in the Framework
‣Bundle Context 

A bundle's execution context within the Framework. The Framework
passes this to a Bundle Activator when a bundle is started or stopped.  
The Bundle Context is used to:
‣access information about the rest of the Framework
‣ to install other bundles
‣ to access the service registry

An installation is persistent and atomic.

98

Entities of the OSGi layer.

OSGi

Life Cycle Layer

‣Bundle Activator 
An interface implemented by a class in a bundle that is used to start and
stop that bundle.
‣Bundle Event 

An event that signals a life cycle operation on a bundle. This event is
received via a (synchronous) Bundle Listener.
‣Framework Event 

An event that signals an error or Framework state change. The event is
received via a Framework Listener.
‣Bundle Listener 

A listener to Bundle Events.

99

Entities of the OSGi layer.

OSGi

Life Cycle Layer

‣Synchronous Bundle Listener 
A listener to synchronously delivered Bundle Events.
‣Framework Listener 

A listener to Framework events.
‣Bundle Exception 

An Exception thrown when Framework operations fail.
‣System Bundle 

A bundle that represents the Framework.

100

Entities of the OSGi layer.

OSGi

Life Cycle Layer

‣ Installation of a bundle can only be performed by another bundle  
(or through implementation specific means.)
‣A Bundle is started through its Bundle Activator.
‣ Its Bundle Activator is identified by the Bundle-Activator manifest header.

The given class must implement the BundleActivator interface and
provide a default constructor.

101

public interface BundleActivator {

/**
 * Called when this bundle is started so the Framework can perform the
 * bundle-specific activities necessary to start this bundle. This method
 * can be used to register services or to allocate any resources that this
 * bundle needs.
 *
 * This method must complete and return to its caller in a timely manner.
 *
 * @param context The execution context of the bundle being started.
 */
public void start(BundleContext context) throws Exception;

...

Implementation of the “main class”.

OSGi

Hello World OSGi Bundle

A not well defined
Implementation

102

public interface BundleActivator {
...

/**
 * Called when this bundle is stopped so the Framework can perform the
 * bundle-specific activities necessary to stop the bundle. In general, this
 * method should undo the work that the <code>BundleActivator.start</code>
 * method started. There should be no active threads that were started by
 * this bundle when this bundle returns. A stopped bundle must not call any
 * Framework objects.
 *
 * <p>
 * This method must complete and return to its caller in a timely manner.
 *
 * @param context The execution context of the bundle being stopped.
 */
public void stop(BundleContext context) throws Exception;

}

Implementation of the “main class”.

OSGi

Hello World OSGi Bundle

Implementation restriction...

The stop method must clean up and stop any running threads

103

Entities of the OSGi layer.

OSGi

Life Cycle Layer: Bundle Context

‣Represents the execution context of a single bundle; acts as a proxy
to the underlying framework
‣To access a bundle’s persistent storage area the BundleContext’s
getDataFile(String) method can be used 
The name is a relative name and translated into an absolute File object, which is
then returned.
‣The BundleContext interface defines a method for returning information

pertaining to framework properties: getProperty(String). E.g.
org.osgi.framework.version, org.osgi.framework.vendor,
org.osgi.framework.executionenvironment, ...

104

Entities of the OSGi layer.

OSGi

Life Cycle Layer: Bundle Object

‣For each installed bundle, there is
an associated Bundle object.
‣The Bundle object can be used

to manage the bundle’s life
cycle and to access reflective
information. 
Life cycle methods:
‣start()
‣stop()
‣update(...)
‣uninstall()

(resolved – all Java classes are available)

105

INSTALLED

RESOLVED

STARTING

ACTIVE

STOPPING

UNINSTALLED

update
refresh

install

uninstall

resolve
refresh
update

start

stopuninstall

Entities of the OSGi layer.

OSGi

Life Cycle Layer: System Bundle

‣The Framework itself is represented as a bundle
‣The bundle representing the Framework is referred to as the system

bundle
‣Through the system bundle, the Framework may register services that

can be used by other bundles

Note: calling “stop” on the system bundle returns immediately and shuts

106

Entities of the OSGi layer.

OSGi

Life Cycle Layer: Events

‣The BundleContext’s methods can be used to add and remove listeners
for the following events:
‣ BundleEvent  

for changes in the life cycle of bundles
‣ FrameworkEvent  

framework related events, e.g., packages have been refreshed.

107

Entities of the OSGi layer

OSGi

Life Cycle Layer: Events

‣Events can be asynchronously delivered, unless otherwise stated,
meaning that they are not necessarily delivered by the same thread that
generated the event
‣A bundle that calls a listener should not hold any Java monitors  

Neither the Framework nor the originator of a synchronous event should
be in a monitor when a callback is initiated.

108

Implementation restriction...

OSGi

A HelloWorld Bundle

A Very First Example
(Bundle Implementation)

109

package helloworld;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {

/* ... */

}

Implementation of the “main class”.

OSGi

Hello World OSGi Bundle

Here, we have explicit

110

public class Activator implements BundleActivator {

public void start(BundleContext context) throws Exception {
System.out.println("Bundle started: Hello world!");

}

public void stop(BundleContext context) throws Exception {
System.out.println("Bundle stopped: Time to say goodbye.");

}

}

Implementation of the “main class”.

OSGi

Hello World OSGi Bundle

OSGi is based on

111

public class Activator implements BundleActivator {

public void start(BundleContext context) {

System.out.println("HelloWorldKiller searching...");
Bundle[] bundles = context.getBundles();
for (int i = 0; i < bundles.length; i++) {

if ("HelloWorld".equals(bundles[i].getSymbolicName())) {
try {

System.out.println("Hello World found, uninstalling!");
bundles[i].uninstall();

} catch (BundleException e) {
System.err.println("Failed: " + e.getMessage());

} finally { return; }
}

}
System.out.println("Hello World bundle not found");

}
...

}

Implementation of the “main class”.

OSGi

Hello World Killer OSGi Bundle

Using the context object to lookup

112

Selected fields of the manifest used to specify a bundle’s properties.

OSGi

Module Layer: The Manifest

‣Bundle-ManifestVersion 
for release 4 of the OSGi specification the version is “2”
‣Bundle-Description 

a short description
‣Bundle-SymbolicName 

a unique, non-localizable name
‣Bundle-Classpath 

a comma-separated list of JAR file path names or directories (inside the
bundle) containing classes and resources
‣Bundle-Activator 

specifies the name of the class used to start and stop the bundle

used to refer to a bundle at runtime should be globally unique

113

Selected fields of the manifest used to specify a bundle’s properties.

OSGi

Module Layer: The Manifest

‣Bundle-Version 
the version of this bundle
‣Bundle-RequiredExecutionEnvironment 

e.g.
‣JRE-1.1,
‣J2SE-1.2, J2SE-1.3, J2SE-1.4, J2SE-1.5,
‣JavaSE-1.6,
‣PersonalJava-1.1, PersonalJava-1.2,
‣CDC-1.0/PersonalBasis-1.0, CDC-1.0/PersonalJava-1.0
‣ ...(further bundle specific properties)

114

Fields of the manifest used to specify a bundle’s dependencies.

OSGi

Module Layer: The Manifest

‣Export-Package 
a declaration of exported packages
‣ Import-Package 

the imported packages for this bundle
‣Require-Bundle 

specifies the required exports from another bundle.

OSGi effectively has introduced a new code protection level: if a package in your
bundle is not listed on the Export-Package header, then it is only accessible within your
module.

115

Enables code protection orthogonal to Java’s visibility mechanisms.

Attention: do not import packages that are also defined by your own bundle.

OSGi

A HelloWorld Bundle

A Very First Example
(The Manifest)

116

Manifest-Version: 1.0

Bundle-Name: HelloWorld

Bundle-Description: A simple hello world bundle.

Bundle-Activator: helloworld.Activator

Import-Package: org.osgi.framework

Bundle-Vendor: Michael Eichberg

Bundle-ManifestVersion: 2

Bundle-SymbolicName: HelloWorld

Bundle-Version: 1.0.0

OSGi

Manifest of a Hello World OSGi Bundle

‣The manifest for our HelloWorld Bundle:

When specifying the symbolic name it is recommended to follow the
guidelines for Java package names.

117

Should fit in one line!

The class that will be started.

Only required if the bundle interacts with the OSGi runtime.

Archive: OSGi-Rev.1-1.0.0.jar
 Length Date Time Name
 -------- ---- ---- ----
 335 04-10-08 14:09 META-INF/MANIFEST.MF
 841 04-10-08 14:09 helloworld/Activator.class
 -------- -------
 1176 2 files

Just the manifest and the class file.

OSGi

Contents of the Hello World OSGi Bundle
118

OSGi

Knopflerfish OSGi Desktop

Deploying the Hello World OSGi Bundle

[stdout] Bundle started: Hello world!
[stdout] Bundle stopped: Time to say goodbye.
[stdout] Bundle started: Hello world!
[stdout] Bundle stopped: Time to say goodbye.
[stdout] Bundle started: Hello world!
[stdout] Bundle stopped: Time to say goodbye.
[stdout] Bundle started: Hello world!

119

OSGi

Module Layer: Class Loading

‣Bundles can share a single virtual machine (VM)
‣Within this VM, bundles can ...
‣hide packages and classes from other bundles
‣share packages with other bundles

it is possible that bundle A uses a library L in version X

120

Bundle Dependencies

OSGi

Module Layer: Class Loading

‣Each bundle is associated with its own class loader that can load classes
and resources from:
‣ the boot class path
‣ framework class path
‣bundle space  

the Jar file that is associated with the bundle and all fragments
‣ ...

121

Bundle Dependencies

OSGi

Module Layer: Class Loading

‣Each bundle is associated with its own class loader that can load classes
and resources from:
‣ ...
‣class space 

A class space is all classes reachable from a given bundle’s class loader.
The space can contain classes from:
‣ the parent class loader
‣ imported packages
‣ required bundles
‣ the bundle's class path (private packages)

122

A standard Singleton.

package demo;
public class MySingleton {

private static MySingleton instance = null;
private MySingleton() {}

public static synchronized MySingleton instance() {
if (instance == null) instance = new MySingleton();
return instance;

}
}

Output
Object a = MySingleton.instance();
Object b = MySingleton.instance();
System.out.println(a == b);

package demo;
public class MySingleton {

private static MySingleton instance = null;
private MySingleton() {}

public static synchronized MySingleton instance() {
if (instance == null) instance = new MySingleton();
return instance;

}
}

Code

true

Output
ClassLoader cl1 = ClassLoader.getSystemClassLoader();
Class<?> clazz1 = cl1.loadClass("demo.MySingleton");
Object a = clazz1

.getDeclaredMethod("instance", new Class<?>[] {})
.invoke(null);

ClassLoader cl2 = ClassLoader.getSystemClassLoader();
Class<?> clazz2 = cl2.loadClass("demo.MySingleton");
Object b = clazz2

.getDeclaredMethod("instance", new Class<?>[] {})
.invoke(null);

System.out.println(a == b);

package demo;
public class MySingleton {

private static MySingleton instance = null;
private MySingleton() {}

public static synchronized MySingleton instance() {
if (instance == null) instance = new MySingleton();
return instance;

}
}

Code

true

Output
ClassLoader cl1 = new MyClassLoader();
Class<?> clazz1 = cl1.loadClass("demo.MySingleton");
Object a = clazz1

.getDeclaredMethod("instance", new Class<?>[] {})
.invoke(null);

ClassLoader cl2 = new MyClassLoader();
Class<?> clazz2 = cl2.loadClass("demo.MySingleton");
Object b = clazz2

.getDeclaredMethod("instance", new Class<?>[] {})
.invoke(null);

System.out.println(a == b);

package demo;
public class MySingleton {

private static MySingleton instance = null;
private MySingleton() {}

public static synchronized MySingleton instance() {
if (instance == null) instance = new MySingleton();
return instance;

}
}

Code

???

Resolving Bundle Dependencies

OSGi

Module Layer: Class Loading

‣Resolving is the process where importers are wired to exporters
‣Resolving is a process of satisfying constraints
‣Resolving must take place before any code from a bundle can be loaded

or executed

127

Resolving Bundle Dependencies

OSGi

Module Layer: Class Loading

Resolving is the process where importers are wired to exporters.
‣Constraints on the wires are statically defined by:
‣ Import and export packages
‣Required bundles, which import all exported packages from a bundle
‣Fragments, which provide their contents and definitions to the host
‣A bundle can be resolved if the following conditions are met:
‣All its mandatory imports are wired
‣All its mandatory required bundles are available and their exports wired

128

Resolving Bundle Dependencies; Mechanisms to Match Imports to Exports

OSGi

Module Layer: Class Loading

Version Matching
‣Bundle A:  
Import-Package: p; version="[1,2)"
‣Bundle B:  
Export-Package: p; version=1.5.1

resolves correctly

129

Resolving Bundle Dependencies; Mechanisms to Match Imports to Exports

OSGi

Module Layer: Class Loading

Optional Packages
A bundle can indicate that it does not require a package to resolve
correctly, but it may use the package if it is available.  
For example, logging is important, but the absence of a log service should
not prevent a bundle from running.
‣Bundle A:  
Import-Package: p; resolution:=optional; version=1.6
‣Bundle B:  
Export-Package: p; q; version=1.5.0

resolves correctly, but the package p is not available to A due to version
conflicts.

If you specify an optional dependency your code must be

130

Resolving Bundle Dependencies; Mechanisms to Match Imports to Exports

OSGi

Module Layer: Class Loading

Package Constraints
Classes can depend on classes in other packages. These inter-package
dependencies are modeled with the uses directive on the Export-Package
header.  
Example:
‣Bundle A:	  
Import-Package: q; version="[1.0,1.0]"  
Export-Package: p; uses:="q"
‣Bundle B:  
Export-Package: q; version=1.0

can be resolved.

131

package org.bar.q;
...

public org.foo.common.p.PType someMethod() {...}
...

import-package: org.foo.common.p
export-package: org.bar.q,uses:="org.foo.common.p"

Resolving Bundle Dependencies; Mechanisms to Match Imports to Exports

OSGi

Module Layer: Class Loading

Package Constraints
‣Bundle A

Record the “leakage” - this
information is required by the
resolver to make sure that the
packages are correctly wired.

http://underlap.blogspot.com/2007/10/osgi-type-safety-and-uses-directive.html

132

Resolving Bundle Dependencies; Mechanisms to Match Imports to Exports

OSGi

Module Layer: Class Loading

‣Attribute Matching 
Allows the importer and exporter to influence the matching process in a
declarative way.
‣Class Filtering  

limits the visibility of the classes in a package with the include and
exclude directives on the export definition.
‣Provider selection  

allows the importer to select which bundles can be considered as
exporters.

e.g., Import-Package: com.ac.foo;company=”ACME”

Export-Package: org.acme.open; exclude:=Implementation

133

Resolving Bundle Dependencies

OSGi

Module Layer: Class Loading

Runtime Class Loading
‣After a bundle is resolved, the Framework creates one class loader

for each bundle that is not a fragment
‣This class loader provides each bundle with its own name space, to

avoid name conflicts, and allows resource sharing with other bundles

134

Resolving Bundle Dependencies

OSGi

Module Layer: Fragments

A fragment allows to supply entries that are inserted into the host's
Bundle-Classpath. The following example illustrates this:
‣Bundle A:	  
Bundle-SymbolicName: A  
Bundle-Classpath:
required.jar,optional.jar,default.jar,.
‣Bundle B:	  
Bundle-SymbolicName: B  
Bundle-Classpath: fragment.jar  
Fragment-Host: A

135

The bundle-classpath must
include the directory (within the
bundle) that contains the
bundles class files.

In these examples, the bundle
itself is not in the classpath. In
general "." is also part of the
Bundle-Classpath (see http://
www.aqute.biz/Blog/2007-02-19)

Resolving Bundle Dependencies

OSGi

Module Layer: Bundle Class Path

‣ Intra bundle class path dependencies are declared in the Bundle-
Classpath manifest header
‣ It declares the bundle’s embedded class path using one or more JAR files

or directories that are contained in the bundle’s JAR file
‣When locating a class path entry in a bundle, the Framework must

attempt to locate the class path entry relative to the root of the bundle’s
JAR.  
If a class path entry cannot be located in the bundle, then the Framework
must attempt to locate the class path entry in each of the attached
fragment bundles.

136

Locating Resources (Classes)

OSGi

Module Layer: Cyclic Bundle Dependencies

‣OSGi uses a depth first search
order in case of cyclic
dependencies.
‣Bundle A:  
Require-Bundle: B, C
‣Bundle B: 
“No Requirements”
‣Bundle C:  
Require-Bundle: D
‣Bundle D:  
Require-Bundle: A

‣Resulting bundle search order:  
B, D, C, A.

137

A

p

B

p

C

p

D

p

Design Guideline:  
 
The preferred way of wiring bundles is to use the
Import-Package and Export-Package headers
because they couple the importer and exporter to a
much lesser extent than using require bundle.

OSGi

Module Layer: Bundle Dependencies
138

Manifest-Version: 1.0

Bundle-RequiredExecutionEnvironment: J2SE-1.5
Bundle-ManifestVersion: 2
Bundle-Localization: plugin
Bundle-SymbolicName: org.eclipse.jdt.junit4.runtime
Require-Bundle: org.junit4;bundle-version="[4.1.0,4.2.0)",
org.eclipse.jdt.junit.runtime;bundle-version="[3.2.0,4.0.0)"
Export-Package: org.eclipse.jdt.internal.junit4.runner; x-internal:=true
Bundle-Version: 1.0.1.r321_v20060905

Eclipse-LazyStart: true

org.eclipse.jdt.junit4.runtime

OSGi

Example Bundles and Fragments

Direct bundle dependencies!

The Bundle-Localization header contains the location in the bundle where

139

Manifest-Version: 1.0

Bundle-ManifestVersion: 2
Fragment-Host: org.eclipse.core.filesystem;bundle-version="[1.0.0,2.0.0)"
Bundle-Localization: fragment
Bundle-SymbolicName: org.eclipse.core.filesystem.macosx; singleton:=true
Bundle-Version: 1.0.0.v20060603

Eclipse-PlatformFilter: (& (osgi.os=macosx) (|(osgi.arch=x86) (osgi.arch=ppc)))

org.eclipse.core.filesystem.macosx

OSGi

Example Bundles and Fragments

“singleton” is Eclipse specific

140

Supporting Loosely Coupled Application Designs

OSGi

Service Layer

‣The OSGi Service Platform provides a lightweight publish, find and bind
service model for services inside the JVM with the OSGi Framework
service registry
‣A service allows one bundle to provide functionality to other bundles
‣A service is a normal Java object (the service object) that is

registered under one or more Java interfaces (the service
interfaces) with the service registry
‣Bundles can register services, search for them, or receive notifications

when their registration state changes
‣When a bundle is stopped, all the services registered with the Framework

by a bundle must be automatically unregistered

141

Supporting Loosely Coupled Application Designs

OSGi

Service Layer: Functionality

‣Full access to the Service Layer’s internal state is provided (Reflective)
‣Access to services can be restricted (Secure)

142

Supporting Loosely Coupled Application Designs

OSGi

Service Layer: Entities

‣Service  
An object registered with the service registry under one or more interfaces
together with properties. This object can be discovered and used by
bundles.  
The service object is owned by, and runs within, a bundle.
‣Service Registry  

Holds the service registrations.
‣Service Reference  

A reference to a service. Provides access to the service’s properties but
not the actual service object. The service object must be acquired
through a bundle’s Bundle Context.

provided by the framework

143

Supporting Loosely Coupled Application Designs

OSGi

Service Layer: Entities

‣Service Registration 
The receipt provided when a service is registered. The service registration
allows the update of the service properties and the unregistration of the
service.
‣Service Permission  

The permission to use an interface name when registering or using a
service.
‣Service Factory 

A facility to let the registering bundle customize the service object for
each using bundle.
‣Service Listener 

A listener to Service Events.

If we require multiple (different) instances of a service.

144

Supporting Loosely Coupled Application Designs

OSGi

Service Layer: Entities

‣Service Event 
An event holding information about the registration, modification, or
unregistration of a service object.
‣Filter 

An object that implements a simple but powerful filter language. It can
select on properties.

145

OSGi

The Whiteboard Pattern

Excursion

146

www.osgi.org/wiki/uploads/Links/whiteboard.pdf

OSGi

background information

OSGi
147

http://neilbartlett.name/blog/osgi-articles/

OSGi

Example Smart Home Scenario

Temperature
Sensor

Radiator

How could an implementation look like?

Class Diagram

OSGi

The Observer Pattern

‣ Intent: 
Define a one-to-many dependency between objects so that when
object changes state, all its dependents are notified and updated
automatically.
‣ ...

149

OSGi

Example Smart Home Scenario

Temperature
Sensor

Radiator

2: signal temperature changes

How could an implementation look like?

1: register as listener

[Design Patterns; Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Addison Wesley 1995]

OSGi

Class Diagram

The Observer Pattern
151

attach(Observer)
detach(Observer)
notify()

Subject
<<abstract>>

attach(Observer)
detach(Observer)
notify()

subjectState
ConcreteSubject

update()

Observer

update()
observerState
ConcreteObserver

for all o in observers {
 o.update()
}

observers

subject

public interface TempListener {

public void tempChanged(TempChangedEvent event);
}

public class TemperatureSensor {

private final Set<TempListener> tempListeners = new HashSet<TempListener>();

public void registerTempListener(TempListener tl) {
tempListeners.add(tl);

}

public void unregisterTempListener(TempListener tl) {
tempListeners.remove(tl);

}
...

}

First Idea

OSGi

Sensor Enables the Registration of “Listeners”

Temp = Temperature

152

public class Radiator implements TempListener {

private final TemperatureSensor sensor;

public Radiator(TemperatureSensor sensor) {
sensor.registerTempListener(this);
this.sensor = sensor;

}

public void dispose() {
sensor.unregisterTempListener(this);

}

public void tempChanged(TempChangedEvent event) {
...

}
}

First Idea

OSGi

Sensor Enables the Registration of “Listeners”

IoC, Dependency Injection and OSGi...:

Many containers have been developed, for example PicoContainer,
HiveMind, Spring, and even EJB 3.0.

However there is one limiting factor of all these containers to date: they
are mostly static. Once a TemperatureSensor is given to a Radiator , it
tends to be associated for the lifetime of the JVM.

153

Problems in the Context of OSGi

OSGi

The Observer Pattern

‣Problems with the Observer Pattern in continuously running and dynamic
applications (e.g. SmartHome scenario):
‣When the event source goes away the observer must clean up

any references it holds.
‣When the observer goes away, the event source (subject) should

remove it from the list of observers.

‣ In an OSGi environment, the owner of an object can and will go away.

154

Implementation Restriction

OSGi

Dependencies and Stale References

Bundles must listen to events generated by the Framework to clean
up and remove stale references.
‣A stale reference is a reference to a Java object that belongs to the class

loader of a bundle that is stopped or is associated with a service object
that is unregistered.
‣ It has to be ensured that stale references are deleted.

155

Outline

OSGi

The Whiteboard

‣Goal:  
No private registries as required by the observer pattern.

‣Description:
‣Each event listener registers itself as a service (e.g. HeatingSystem)

with the OSGi service registry.
‣When the event source (e.g. TemperatureSensor) has an event object

to deliver, the event source calls all event listeners (e.g. the
HeatingSystem service) in the service registry. Hence, the inter-bundle
dependencies between the event source and the event listener is
handled by the framework.

156

[Listeners Considered Harmful: The “Whiteboard” Pattern; Revision 2.0; OSGi Alliance , 17. August 2004]

OSGi

Structure

The Whiteboard
157

Event source

bundle

Event listener

bundleEvent listener

bundle

Registry

servicegets registers

receive service registrations

OSGi

A Movie Finder Service

158

OSGi

A Movie Finder Service

1. Bundle 
MovieFinder Service - Interface

159

package movies;

public interface MovieFinder {

Movie[] findAll();
}

API

OSGi

MovieFinder Service - Interface
160

package movies;

public class Movie {

private final String title;
private final String director;

public Movie(String title, String director) {
this.title = title;
this.director = director;

}

public String getTitle() {
return title;

}

public String getDirector() {
return director;

}
}

API

OSGi

MovieFinder Service - Interface
... here, no dependencies on OSGi

161

Manifest-Version: 1.0

Bundle-Name: MoviesInterface

Bundle-Description: Declaration of an interface to find movies.

Bundle-Vendor: Michael Eichberg

Bundle-ManifestVersion: 2

Bundle-SymbolicName: MoviesInterface

Bundle-Version: 1.0.0

Export-Package: movies;specification-version=1.0.0

Metadata

OSGi

MovieFinder Service - Interface

just API, no BundleActivator!

162

OSGi

A Movie Finder Service

2. Bundle 
MovieFinder Service - Implementation

163

package movies.spi;

import movies.Movie;
import movies.MovieFinder;

public class BasicMovieFinder implements MovieFinder {

private static final Movie[] MOVIES = new Movie[] {
new Movie("The Godfather", "Francis Ford Coppola"),
new Movie("Spirited Away", "Hayao Miyazaki")

};

public Movie[] findAll() {

return MOVIES;
}

}

Sourcecode

OSGi

MovieFinder Service - Implementation

the package must not be movies!

164

package movies.spi;
import ...;

public class BasicMoviesFinderActivator implements BundleActivator {

private ServiceRegistration registration;

public void start(BundleContext context) {
MovieFinder finder = new BasicMovieFinder();
registration = context.registerService(

MovieFinder.class.getName(),
finder,
new Properties());

}

public void stop(BundleContext context) {
registration.unregister();

}
}

Sourcecode

OSGi

MovieFinder Service - Implementation

Registration of the
service

Unregistration of the
service (avoid stale
references)

165

Manifest-Version: 1.0

Bundle-Name: BasicMoviesFinderService

Bundle-Description: Implementation of a movie finder service.

Import-Package: movies;version="[1.0.0,2.0.0)",org.osgi.framework

Bundle-Vendor: Michael Eichberg

Bundle-ManifestVersion: 2

Bundle-SymbolicName: MoviesFinderServiceSPI

Bundle-Version: 1.0.0

Bundle-Activator: movies.spi.BasicMoviesFinderActivator

Metadata

OSGi

MovieFinder Service - Implementation

dependencies on other services

166

OSGi

Using the Movie Finder Service

3. Bundle
Implementation of a MovieLister Service that uses the MovieFinder Service

167

package movies.lister;

import java.util.List;
import movies.Movie;

public interface MovieLister {

List<Movie> listByDirector(String name);
}

API

OSGi

MovieLister Service - Interface

the package must not be “movies”!

168

package movies.lister.spi;

public class MovieLister implements movies.lister.MovieLister {

private final Collection<MovieFinder> finders = Collections
.synchronizedCollection(new ArrayList<MovieFinder>());

protected void bindFinder(MovieFinder finder) {
finders.add(finder);
System.out.println("MovieLister: added a finder");

}

protected void unbindFinder(MovieFinder finder) {
finders.remove(finder);
System.out.println("MovieLister: removed a finder");

}

...

Sourcecode

OSGi

MovieLister Service - Implementation

the package must be different!

Handle dynamic
service (un)registration.

169

package movies.lister.spi;

public class MovieLister implements movies.lister.MovieLister {

...

public List<Movie> listByDirector(String director) {
MovieFinder[] finderArray = finders.toArray(new MovieFinder[finders.size()]);
List<Movie> result = new LinkedList<Movie>();
for (int j = 0; j < finderArray.length; j++) {

Movie[] all = finderArray[j].findAll();
for (int i = 0; i < all.length; i++) {

if (director.equals(all[i].getDirector())) {
result.add(all[i]);

}
}

}
return result;

}
}

Sourcecode

OSGi

MovieLister Service - Implementation

the “business” method

Use all
MovieFinder
services.

170

public class MovieFinderTracker extends ServiceTracker {

private final MovieLister lister = new MovieLister();

private int finderCount = 0;

private ServiceRegistration registration = null;

public MovieFinderTracker(BundleContext context) {

super(context, MovieFinder.class.getName(), null);
}

private boolean registering = false;
...

Sourcecode

OSGi

MovieLister Service - Implementation

Track Service registrations and unregistrations.

171

public class MovieFinderTracker extends ServiceTracker {
...

@Override public Object addingService(ServiceReference reference) {
MovieFinder finder = (MovieFinder) context.getService(reference);
lister.bindFinder(finder);
synchronized (this) {

finderCount++;
if (registering) return finder;
registering = (finderCount == 1);
if (!registering) return finder;

}
ServiceRegistration reg = context.registerService(MovieLister.class

.getName(), lister, null);

synchronized (this) { registering = false; registration = reg; }
return finder;

}
...

Sourcecode

OSGi

MovieLister Service - Implementation
172

registering = (finderCount ==1)

⇢ make the MovieLister service available, if the service is not yet available

public class MovieFinderTracker extends ServiceTracker {
...
@Override public void removedService(

ServiceReference reference,Object service) {
MovieFinder finder = (MovieFinder) service;
lister.unbindFinder(finder);
context.ungetService(reference);
ServiceRegistration needsUnregistration = null;
synchronized (this) {

finderCount--;
if (finderCount == 0) {

needsUnregistration = registration;
registration = null;

}
}
if (needsUnregistration != null) {

needsUnregistration.unregister();
}

}
}

Sourcecode

OSGi

MovieLister Service - Implementation
173

Minimal amount of code in the

package movies.lister.spi;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class MovieListerActivator implements BundleActivator {

private MovieFinderTracker tracker;

public void start(BundleContext context) {
tracker = new MovieFinderTracker(context);
tracker.open();

}

public void stop(BundleContext context) {
tracker.close();

}
}

Sourcecode

OSGi

MovieLister Service - Implementation

Just start the tracker!

174

Manifest-Version: 1.0

Bundle-Name: MoviesListerDynamicService

Bundle-Description: Implementation of a movie lister service.

Import-Package: org.osgi.framework, org.osgi.util.tracker, movies

Bundle-Vendor: Michael Eichberg

Bundle-ManifestVersion: 2

Bundle-SymbolicName: MoviesListerDynamicServiceSPI

Bundle-Version: 1.0.0

Bundle-Activator: movies.lister.spi.MovieListerActivator

Export-Package: movies.lister

Metadata

OSGi

MovieFinder Service - Implementation

dependencies on other services

175

