Geo-Distributed Big Data Processing

Patrick Eugster
Outline

• Big data background
• Geo-distribution motivation
• Geo-distributed tasks
• Geo-distributed workflows
• Conclusions and outlook
Outline

• Big data background
 • Geo-distribution motivation
 • Geo-distributed tasks
 • Geo-distributed workflows
• Conclusions and outlook
Big Data

• Large datasets ranging from hundreds of GBs to hundreds of TBs (for most users) and even PBs for large corporations [Wikipedia]

• Often GB range [Schwarzkopf et al.;HotCloud’12]

• Too large for traditional relational database tools and single nodes to handle

• Processed using data-parallel software running tens, hundreds, even thousands of computers
Big Data - Why?

• We need it
 • More users connected to the Internet: “Everyone on earth will be connected to the Internet by 2020” [E. Schmidt’13]

• We want it
 • Applications use large datasets, e.g., for operation, monitoring, auditing, knowledge extraction

• Because we can
 • Large amounts of cheap “cloud” storage available: “Amazon S3 contains over 449 billion objects and during peak time, processes more than 290K requests per second” [AWS blog’11]
Processing Big Data

- MapReduce (MR) popularized by [Dean and Ghemawat; OSDI’04]
 - Inspired by functional programming
 - Consists of two phases
 - **map** - takes input records and outputs sets of `<key, value>` pairs
 - **reduce** - handles set of values for given keys and emits sets of values
 - Open source Apache Hadoop
- HDFS distributed file system inspired by Google’s GFS [Ghemawat et al.; SOSP’03]
Workflow Programming

• Many “high-level languages” proposed, e.g.,
 • Pig Latin [Olston et al.; SIGMOD’08]
 • (Mostly) declarative untyped scripting language
 • Open source Apache Pig
 • Flume Java [Chambers et al.; PLDI‘10]
 • Java library
 • Open source Apache Crunch
 • Many compile to MR
Pig Latin Example

"Word count"

```pig
input_lines = LOAD 'input_file' AS (line:chararray);
words = FOREACH input_lines GENERATE FLATTEN(TOKENIZE(line)) AS word;
word_groups = GROUP words BY word;
word_count = FOREACH word_groups GENERATE group, COUNT(words);
STORE word_count INTO 'output_file';
```

"Yahoo estimates that between 40% and 60% of its Hadoop workloads are generated from Pig [...] scripts. With 100,000 CPUs at Yahoo and roughly 50% running Hadoop, that’s a lot [...]" [IBM DeveloperWorks’12]
Pig Latin Example

```
input_lines = LOAD 'input_file' AS (line: chararray);
words = FOREACH input_lines GENERATE FLATTEN (TOKENIZE(line)) AS word;
word_groups = GROUP words BY word;
word_count = FOREACH word_groups GENERATE group, COUNT(words);
STORE word_count INTO 'output_file';
```

“Yahoo estimates that between 40% and 60% of its Hadoop workloads are generated from Pig scripts. With 100,000 CPUs at Yahoo and roughly 50% running Hadoop, that's a lot..." [IBM DeveloperWorks’12]
Outline

• Big data background

• **Geo-distribution motivation**

• Geo-distributed tasks

• Geo-distributed workflows

• Conclusions and outlook
Geo-Distributed Big Data

- Many large datasets geo-distributed, i.e., split across sites
 - Stored near resp. sources, frequently accessing entities
 - Gathered and stored by different (sub-)organizations yet shared towards a common goal
 - E.g., US census, Google “buckets”
 - Replicated across datacenters for availability, incompletely to limit the overhead of updates
Geo-Distributed Big Data

• Many analysis tasks involve several datasets, which may be distributed

• Legal constraints may confine certain datasets to specific locations

• The “cloud” is not a single datacenter

• Inter-DC latency ≠ intra-DC latency
Concrete Scenario

• Global web-based service provider
 • Serve customers from close-by datacenters
 • “Regional” customer bases
 • Run analyses across all regions
 • E.g., average age of customers buying product x
GD in current Toolchain

- Hadoop
 - Assumes uniform latencies
 - Reducer placement based on resource availability
 - Data must be in one HDFS instance or S3 bucket

- HDFS
 - Single point of management (namenode)
 - Performs poorly with high and/or inconsistent latencies

- Pig Latin, Flume, Java et al.
 - Inherit weaknesses of underlying systems
 - No support for expressing distribution
Potential for Improvement

• Conjecture: poor execution choices result in high costs/delays

• E.g., US Census 2000 data (121 GB), 2 Amazon EC2 datacenters, MapReduce cluster of 10 nodes each

• Two tasks (MR jobs) (1) filter records (2) group records

• Associative: can execute on subsets of data and then aggregate
State of the Art

- **GD storage**: Many systems, e.g., [Lloyd et al.; SOSP’11], [Sovran et al.; SOSP’11], [Cho&Aguilera; ATC’12], [Sciasica&Pedone; DSN’13], [Zhang et al.; SOSP’13], consider GD data reads & writes.

- **GD data location**: Volley [Agraval et al.; NSDI’10] or [Tran et al.; ATC’11] migrate GD big data based on application needs.

Outline

• Big data background

• Geo-distribution motivation

• Geo-distributed tasks

• Geo-distributed workflows

• Conclusions and outlook
GD Tasks

[Jayalath&Eugster;IEEE TC’14]

• Dataset I distributed across n datacenters (DC_1 to DC_n), each has execution cluster

• Sequence of m tasks T_1 to T_m (cf. transducers)
Problem Statement

• How to efficiently perform a task sequence on a GD dataset?

• Several solutions varying by consolidation point, e.g., MR:
 • Copy all data to 1 datacenter, perform job
 • Perform mapping in respective datacenters, allocate all reducers in 1 datacenter
 • Perform mapping and reducing in respective datacenters, aggregate subsequently (assuming “associativity”)
 • Combinations, e.g., consolidate input from 2 of 3 datacenters, perform mapping individually, then reducing in 1 datacenter
Data Transformation Graphs (DTGs)

- A node - distribution of data and the task execution progress

- Weight of an edge - cost (monetary) or time for performing a task or a copy operation

- Each path from a starting node to an end node is a possible execution path

- A shortest path calculation algorithm is used to determine the optimal path

- Optimal with respect to a given partition distribution and other parameter values
DTGs by Example

- 3 datacenters, 1 input partition in each, 1 MR job (2 tasks - map and reduce)
- 3 stages - stage i contains all nodes with exactly i tasks executed
- “Direct” vs “indirect” MR
- Intermediate data stored locally
Sequences

- DTG for each job
- Each node in stage 2 of DTG of MR job i merged with corresponding node in stage 0 of MR job $i+1$ DTG
Sampling and Extrapolation

- Determining edge weights
 - Execute each task on data samples in all execution clusters (in parallel), develop functions to determine execution time and output size
 - (Not sampling all paths)
 - Extrapolation used to predict execution time and output size for large amounts of data
- Users can manually specify functions
Determining Edge Weights

Example DTG and functions

\(W_1 = \Psi / B_{2,1}, W_2 = \Psi * C_{2,1} \)

\(W_1 = M^t(2^\Psi) \)
\(W_2 = 2^t M^t(2^\Psi) * X * K \)

\(W_1 = R^t(2^\Psi) \)
\(W_2 = 2^t R^t(2^\Psi) * X * K \)

\(\Psi_1 = M^d(\Psi) \)
\(\Psi_2 = M^d(\Psi) \)
\(X_1 = X_2 = X \)
G-MR

- Java framework implementing DTGs and corresponding algorithms
- Extends Apache Hadoop
- Java annotations for associativity, functions
- Tested in Amazon EC2 with up to 1 TB of data distributed across 4 datacenters
Evaluation Setup

- Up to 4 EC2 datacenters located in US East Coast, US West Coast, Europe and Asia

- 10 large EC2 nodes (7.5 GB of memory, 4 EC2 compute units) in each datacenter

- Nodes leased at $0.34 per hour, data transfer $0.1 per GB

Datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>GBs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENSUSData</td>
<td>121</td>
<td>Year 2000 US Census</td>
</tr>
<tr>
<td>EDUData</td>
<td>5</td>
<td>University Website crawl</td>
</tr>
<tr>
<td>WEATHERData</td>
<td>20</td>
<td>Weather measurements</td>
</tr>
<tr>
<td>PLANTData</td>
<td>10</td>
<td>Properties of Iris plant</td>
</tr>
<tr>
<td>HADOOPData</td>
<td>100</td>
<td>Logs of Yahoo! Hadoop cluster</td>
</tr>
<tr>
<td>NGRAMData</td>
<td>300</td>
<td>Google Books Ngrams</td>
</tr>
</tbody>
</table>

Task sequences

<table>
<thead>
<tr>
<th>Job</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENSUSPROCESSOR</td>
<td>Filters and groups CENSUSData.</td>
</tr>
<tr>
<td>WORDCOUNT</td>
<td>Counts the number of occurrences of words in EDUData</td>
</tr>
<tr>
<td>MEDIANWEATHER</td>
<td>Computes the median of a record in WEATHERData</td>
</tr>
<tr>
<td>KNN</td>
<td>Type of each plant record in PLANTData</td>
</tr>
<tr>
<td>ETL</td>
<td>Extracts and performs a cross product on HADOOPData</td>
</tr>
<tr>
<td>NGRAM</td>
<td>All combinations of last two words of 4 grams</td>
</tr>
</tbody>
</table>
Evaluation

- Two datacenters (DC_1 and DC_2)

- Different execution paths
 - CopyAndExecute - copy all data to a single datacenter prior to execution
 - ExecuteAndCopy - execute all tasks prior to copying
 - PartialCopy - balance the partitions in the middle
Monetary Cost

WORDCOUNT

<table>
<thead>
<tr>
<th>% of input in DC₁</th>
<th>CopyAndExecute</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>40</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>60</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>80</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

NGRAM

<table>
<thead>
<tr>
<th>Execution Path</th>
<th>CopyAndExecute</th>
<th>Optimal</th>
<th>PartialCopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Optimal</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Optimal - ExecuteAndCopy

Optimal - copy data after first MR job
Execution Time

WORDCOUNT

<table>
<thead>
<tr>
<th>% of input in DC<sub>1</sub></th>
<th>Execution Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>40</td>
<td>240</td>
</tr>
<tr>
<td>60</td>
<td>280</td>
</tr>
<tr>
<td>80</td>
<td>320</td>
</tr>
</tbody>
</table>

- **CopyAndExecute**
- **Optimal**

NGRAM

<table>
<thead>
<tr>
<th>Execution Path</th>
<th>Execution Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.0</td>
</tr>
<tr>
<td>B</td>
<td>4.0</td>
</tr>
<tr>
<td>C</td>
<td>6.0</td>
</tr>
<tr>
<td>D</td>
<td>8.0</td>
</tr>
</tbody>
</table>

- **CopyAndExecute**
- **Optimal** - copy data after first MR job

- **Optimal - ExecuteAndCopy**

Execution Path

- **A**
- **B**
- **C**
- **D**

Optimal - copy data after first MR job
complex jobs. For that reasons, several "data-flow"
programming directly with MapReduce is tedious for
number of systems for big data processing. However,
tasks, which represents the execution substrate for a
Rout.
Big Data-flow Processing
zon EC2. More benchmarks can be found in [16].
achieved despite the performance variability in Ama-
demonstrate the high accuracy of G-MRs predictions
dataset ("word count" [11]). Figures 3(d) and 3(c)
was $0

of each instance was $0
compute units) leased in each of them. The cost
10 large instances (7
used here, North Virgina and North California, with
monetary cost. Two Amazon EC2 datacenters are
the results when the objective was to optimize for
execution time optimization while Figure 3(b) shows
Figure 3: Optimizing a sequence of two MapReduce
Optimal
The
between two datacenters
ition time (a) and cost (b). The distribution of data
jobs on a geo-distributed dataset for optimal execu-
Figure 4: Overview of execution of a Rout program.
new algorithms as the Pig Latin interpreter for generating a
Pig Data-flow graph. We refer to this data-
graph as
Dataflow
Level 1
Graph
Runtime
Level 1

Next we thus describe a more generic approach for
In this latter data-flow graph associative MapRe-
level one

Decision
Graph

mapReduce data-flow graph. We refer to this data-
interpreter
Pig
Level 2
Runtime
Level 2

Dataflow
Level 2
Graph

Execution
Program

Dataflow
Level 2
Graph

Execution
Program
Outline

• Big data background
• Geo-distribution motivation
• Geo-distributed tasks
 • Geo-distributed workflows
• Conclusions and outlook
GD Workflows

[Jayalath&Eugster;ICDCS’13]

- n datacenters DC_1 to DC_n and d input datasets DS_1 to DS_d - dataset DS_i consists of s_i sub-datasets ($1 \leq s_i \leq n$)

- GD workflow W, each task taking in one or more (possibly GD) datasets as input and generating one or more datasets as output

Example deployment

DC_1

$I_{1,1}$

$I_{3,1}$

X_1

DC_2

$I_{3,3}$

$I_{1,3}$

$I_{2,2}$

X_2

DC_3

$I_{1,2}$

$I_{2,1}$

$I_{3,2}$

X_3

X_i - Execution cluster
Problem Statement

• How to efficiently perform workflows with GD datasets?

• Two aspects
 1. Executing efficiently: runtime extensions
 2. Expressing computation and constraints: language

 • Model: geo-distributed datastructures and operations
 • Why not transparent?

 • Pig Latin/Pig and Flume Java/Crunch
“Levels of Associativity”

A function f can be

1. Associative (mathematical sense), $f(X_1 \cdot X_2) = f(f(X_1) \cdot f(X_2))$, e.g., \max, \min, top-k

2. There exists a (known) function g s.t. $f(X_1 \cdot X_2) = g(f(X_1) \cdot f(X_2))$, e.g., avg.
 - A. g is well-known (mostly for built-in simple functions, e.g., avg, word count)
 - B. Can be synthesized (cf. 3rd Homomorphism Thm. [Morihata et al.;POPL’09])
 - C. Can not be synthesized

3. Doesn’t exist / is unknown, e.g., join, top-k word count

Why not let programmer explicitly code?
Manual Distribution Example

input_lines = LOAD 'input_file'
 AS (line:chararray);
words = FOREACH input_lines GENERATE
 FLATTEN(TOKENIZE(line)) AS word;
word_groups = GROUP words BY word;
word_count = FOREACH word_groups
 GENERATE group, COUNT(words);
STORE word_count INTO 'output_file';

• More lines of code

• One hard-wired path - may not be optimal

• Has to be associative (e.g., AVG) or “aggregatable” if not strictly associative (e.g., COUNT+SUM)

// Part 1 : Executed in both datacenters
input_lines = LOAD 'input_file'
 AS (line:chararray);
words = FOREACH input_lines GENERATE
 FLATTEN(TOKENIZE(line)) AS word;
word_groups = GROUP words BY word;
word_count = FOREACH word_groups
 GENERATE group, COUNT(words);
STORE word_count INTO 'file1';

// Part 2 : Executed in datacenter DC2 only
// Copied data is stored in file2.
// -> Copy file1 of DC2 to file2 in DC1.

// Part 3: Executed in datacenter DC1 only
records1 = LOAD 'file1' AS
 (word:chararray, count:int);
records2 = LOAD 'file2' AS
 (word:chararray, count:int);
all_records = UNION records1, records2;
grouped = GROUP all_records BY word;
word_count = FOREACH grouped GENERATE
 group, SUM(all_records.count);
STORE word_count INTO 'output_file';
Pig Latin Background: Types

- Simple: `int`, `long`, `float`, `double`, `chararray`, `bytearray`, `boolean`

- Complex
 - `tuple` - an ordered set of fields
 - `bag` - a collection of `tuples`
 - `map` - a set of key-value pairs
 - `relation` - an outer bag with no complex types
Operations and Functions

- **Operations**
 - **UNION** creates a union of two or more relations
 - **CROSS** creates a cross product of two or more relations
 - **JOIN** joins two or more relations
 - **GROUP** groups elements of a relation based on a given criteria

- **Functions**
 - *Eval* functions, e.g., **AVG**, **COUNT**, **CONCAT**, **SUM**, **TOKENIZE**
 - *Math* functions, e.g., **ABS**, **COS**
 - *String* functions, e.g., **SUBSTRING**, **TRIM**
 - *User defined functions* (UDFs)
Rout

- Define two new complex data structures
 - **gdbag** - collection of tuples but may represent tuples from multiple datacenters
 - **gdmap** - collection of key-value pairs which may be from multiple datacenters
 - **bag** and **map** are retained but *pinned* to single datacenters
- Operations and functions
 - String and math functions are always applied tuple-wise
 - Applied individually to sub-datasets in respective datacenters
Eval Functions

• Eval functions are usually applied to groups of tuples

• Users can provide optional *merge* function “g“ (original eval function “f” is called *work* function)

 • Merge function: eval function is applied to individual sub-datasets followed by aggregation via merge

 • Otherwise: all data represented by the corresponding datastructure copied to a single datacenter

 • Destination is decided by Rout runtime (Rrun)
Operators and Example

- Other operations
 - Load and store operations - GDLOAD, GDSTORE
 - Operations for converting between bags/maps and gdbags/gdmaps - COLLAPSE, GDCONVERT
 - GD relational operations - GDJOIN, GDGROUP

// Input represents data in both datacenters
gd_input_lines = GDLOAD 'input' AS (line:chararray);
gd_words = FOREACH input_lines GENERATE
 FLATTEN(TOKENIZE(line)) AS word;
gd_word_groups = GDGROUP gd_words BY word;
gd_word_count = FOREACH gd_word_groups GENERATE group,
 COUNT(gd_words);
word_count = COLLAPSE gd_word_count;
STORE word_count INTO 'output_file';
Rout Runtime Infrastructure (Rrun)

Execution steps of Rrun

- Lazy heuristic copying data across datacenters when needed
 - E.g., operation is non-associative and no merge function is provided
 - Only decides at which points data should be copied, not where to
Evaluation

- 2 EC2 datacenters
- 10 nodes from each datacenter with 1.7 GB of memory and 1 EC2 virtual core running Ubuntu Linux
- Uses HADOOPData dataset, search for exceptions

Log Search

![Execution Time Graph]

Rout - copy data after individual searches
(1) The execution time for the full dataset, compared to PigLatin and in only 64%. This is mainly due to two reasons: (1) since Rrun executes a part of the script to two reasons: (1) since Rrun executes a part of the script and merged using another MapReduce job (MergeMR).

In Section IV, Rrun executes the script as two MapReduce execution, representing their individual execution times from the time for the full dataset, mines the results for input in each individual datacenter.

As the figures illustrate, Rout performs the task more significantly reducing total execution time.

In both datacenters, the execution time for specific records in the log files. In our example we searched and listed the execution times of each MapReduce job logged.

In both datacenters, the execution time for specific records in the log files. In our example we searched and listed the execution times of each MapReduce job logged.
Programmer Effort

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Naïve LoC</th>
<th>Naïve K</th>
<th>Explicit LoC</th>
<th>Explicit K</th>
<th>DuctWork LoC</th>
<th>DuctWork K</th>
<th>Pig Naïve LoC</th>
<th>Pig Naïve K</th>
<th>Pig Explicit LoC</th>
<th>Pig Explicit K</th>
<th>Pig Rout LoC</th>
<th>Pig Rout K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log debugger</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>14</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>15</td>
<td>13</td>
<td>26</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>Log search</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Weather explorer</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>8</td>
<td>11</td>
<td>7</td>
<td>17</td>
<td>12</td>
<td>24</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>Weather top k count</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>17</td>
<td>11</td>
<td>23</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>Weather top k average</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>17</td>
<td>12</td>
<td>25</td>
<td>7</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Compared To Naïve LoC</th>
<th>Compared To Explicit LoC</th>
<th>Compared To Naïve K</th>
<th>Compared To Explicit K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log debugger</td>
<td>+20%</td>
<td>-45%</td>
<td>+28%</td>
<td>-43%</td>
</tr>
<tr>
<td>Log search</td>
<td>+33%</td>
<td>-50%</td>
<td>+25%</td>
<td>-44%</td>
</tr>
<tr>
<td>Weather explorer</td>
<td>+14%</td>
<td>-33%</td>
<td>+10%</td>
<td>-27%</td>
</tr>
<tr>
<td>Weather top k count</td>
<td>+20%</td>
<td>-45%</td>
<td>+25%</td>
<td>-28%</td>
</tr>
<tr>
<td>Weather top k average</td>
<td>+20%</td>
<td>-45%</td>
<td>+28%</td>
<td>-31%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Compared To Naïve LoC</th>
<th>Compared To Explicit LoC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log debugger</td>
<td>+17%</td>
<td>+20%</td>
</tr>
<tr>
<td>Log search</td>
<td>+33%</td>
<td>+14%</td>
</tr>
<tr>
<td>Weather explorer</td>
<td>+0%</td>
<td>+6%</td>
</tr>
<tr>
<td>Weather top k count</td>
<td>+17%</td>
<td>+18%</td>
</tr>
<tr>
<td>Weather top k average</td>
<td>+17%</td>
<td>+18%</td>
</tr>
</tbody>
</table>
Outline

• Big data background
• Geo-distribution motivation
• Geo-distributed tasks
• Geo-distributed workflows

• Conclusions and outlook
Conclusions

• Unlikely all data in the world will ever be in 1 datacenter

• Communication latency related to distance

• Geographical constraints matter

• Operating closer to data pays off in most cases

• Beyond the atmosphere - fog computing
Future Work

• Optimization
 • DTGs/G-MR
 • Heuristics to further reduce complexity
 • Higher-degree polynomials for approximation
 • Rout reconciliation
 • Fine granularity of DTG offline optimization
 • Simple Rout heuristic considering online resource usage
Yet More Future Work

- Model and expressiveness
 - Flume Java/Ductwork
 - Iterative and incremental jobs, main-memory datastructures, cf. Flink, Spark
 - Optimal aggregation [Culhane et al.; HotCloud’14], [Culhane et al.; INFOCOM’15]
 - UDFs
- Security
 - Integrity, availability, and isolation [Stephen&Eugster; Middleware’13]
 - Confidentiality [Stephen et al.; HotCloud’14], [Stephen et al.; ASE’14]
Next Week

• Resource management

• Security