
Dr. Michael Eichberg
Software Engineering
Department of Computer Science
Technische Universität Darmstadt

Introduction to Software Engineering

Modeling Dynamic Behavior
The following slides use material from:
Craig Larman; Applying UML and Patterns, 3rd
Edition; Prentice Hall

UML
Interaction Diagrams
Two types of diagrams can be distinguished:

• UML Sequence Diagrams
• UML Communication Diagrams

|UML Interaction Diagrams - Introduction 3

Interaction diagrams are used to visualize the interaction
via messages between objects; they are used for dynamic
object modeling.

|UML Interaction Diagrams - Introduction 4

Modeling the dynamic behavior is often more rewarding
w.r.t. understanding the domain than modeling the static
structure.

!

|UML Interaction Diagrams - Introduction 5
Four types of interaction diagrams are available.

•Sequence diagrams
(which use a fence
format.)
•Communication diagrams

(which use a graph or
network format)
• Timing diagrams

(not discussed)
• Interaction overview

diagrams
(not further discussed)

:A myB:B
do2

do3

do1

E x a m p l e

|UML Interaction Diagrams - Introduction 6
Four types of interaction diagrams are available.

•Sequence diagrams
(which use a fence
format.)

•Communication
diagrams
(which use a graph or
network format)
• Timing diagrams (not

further discussed)
• Interaction overview

diagrams (not further
discussed)

:A

myB:B

1: do2 ↓
2: do3 ↓

do1 →

E x a m p l e

|UML Interaction Diagrams - Introduction
Java Code for Interaction Diagrams

7

:A myB:B
do2

do3

do1

public class A {
	 private B myB = ...;
	
	 public void do1() {
	 	 myB.do2();
	 	 myB.do3();
	 }	
}

E x a m p l e

Sequence Diagram

|UML Interaction Diagrams - Introduction
Java Code for Interaction Diagrams

8

:A

myB:B

1: do2 ↓
2: do3 ↓

do1 →

public class A {
	 private B myB = ...;
	
	 public void do1() {
	 	 myB.do2();
	 	 myB.do3();
	 }	
}

E x a m p l e

Communication Diagram

|UML Interaction Diagrams - Introduction
Java Code for Interaction Diagrams

9

:A

myB:B

1: do2 ↓
2: do3 ↓

do1 →

public class A {
	 private B myB = ...;
	
	 public void do1() {
	 	 myB.do2();
	 	 myB.do3();
	 }	
}

:A myB:B
do2

do3

public class A {
	 private B myB = ...;
	
	 public void do1() {
	 	 myB.do2();
	 	 myB.do3();
	 }	
}

E x a m p l e

|UML Interaction Diagrams - Introduction

Lifeline box representing an unnamed instance of class Sale.

Common Notations for UML Interaction Diagrams
10

:Sale

|UML Interaction Diagrams - Introduction

Lifeline box representing a named instance (s1) of Sale.

Common Notations for UML Interaction Diagrams
11

s1:Sale

Java Code:
Sale s1 = …;

|UML Interaction Diagrams - Introduction

Lifeline box representing the class Font, or more precisely, that
Font is an instance of class Class - an instance of a metaclass.

Common Notations for UML Interaction Diagrams
12

«metaclass»
Font

Java Code:
Class fontClass = Font.class;

|UML Interaction Diagrams - Introduction

Lifeline box representing an instance of an ArrayList class,
parameterized to hold Sale objects.

Common Notations for UML Interaction Diagrams
13

sales:ArrayList<Sale>

Java Code:
ArrayList<Sale> sales = …;

|UML Interaction Diagrams - Introduction

Lifeline box representing one instance of class Sale, selected
from the sales ArrayList<Sale> collection.

Common Notations for UML Interaction Diagrams
14

sales[i]:Sale

Java Code:

ArrayList<Sale> sales = …;
Sale sale = sales.get(i);

|UML Interaction Diagrams - Introduction
Common Notations for UML Interaction Diagrams

15

sales[i]:Salesales:ArrayList<Sale>

«metaclass»
Fonts1:Sale:Sale

O v e r v i e w

|UML Interaction Diagrams - Introduction

initialize(code)
initialize
d = getProductDescription (id)
d = getProductDescription (id : ItemId)
d = getProductDescription (id : ItemId) : ProductDescription

Common Notations for UML Interaction Diagrams -
Format for Interaction Messages

16

E x a m p l e s

“Commonly” Used Grammar:
return = message(parameter:parameterType):returnType
Parentheses are usually excluded if there are no parameters.
Type information may be excluded if unimportant.

The same syntax is used by Scala.

UML
Sequence Diagrams

|UML Sequence Diagrams
Modeling (Synchronous) Messages

18

:Register :Sale
getDate

toString

report

getRegNo

a found message whose sender
will not be specified

execution specification bar
indicates focus of control

(optional)
dt. Ausführungssequenz

typical synchronous message
shown with a filled-arrow line

|

execution specification bar
indicates focus of control

(optional)
dt. Ausführungssequenz

UML Sequence Diagrams
Modeling (Synchronous) Messages

19

:Register :Sale
getDate

toString

report

getRegNo

a found message whose sender
will not be specified

typical synchronous message
shown with a filled-arrow lineUML Superstructure

If the Message represents a CallAction,
there will normally be a reply message
from the called Lifeline back to the
calling lifeline before the calling lifeline
will proceed.

|UML Sequence Diagrams

Self messages can be modeled using nested execution
specification bars.

20

:Register
cancelTransaction

log

self message

|UML Sequence Diagrams

To show the return value of a message you can
either use the message syntax (A) or use a message
line at the end of an execution specification bar (B).

21

execution specification bar =dt. Ausführungssequenz

:Register :Sale
theReport = report

report

:Register :Sale
report

report

theReport

V a r i a n t A

V a r i a n t B

|UML Sequence Diagrams

The name create is an UML idiom; it is not required.

Object Instance Creation
22

:Register :Sale
makePayment(cashTendered)

create(cashTendered)

authorize

:Payment

Newly created objects are placed
at their creation “height”.

|UML Sequence Diagrams

The object destruction notation is also used to mark objects that are no
longer usable.

Object Instance Destruction
23

:Register :Sale
makePayment(cashTendered)

create(cashTendered)

...

:Payment

X
Not strictly required by the UML.

|UML Sequence Diagrams
Invoking Static Methods (Class Methods)

24

:Register Calendar
locales = getAvailableLocalesreport

Beware, other notations are also used (e.g. underlined method names).

|UML Sequence Diagrams

Corresponding Java Code

Invoking Static Methods (Class Methods)
25

public class Register {
	 public void report() {
	 	 Locale[] locales = Calendar.getAvailableLocales();
	 }
}

Calendar :Register

locales = getAvailableLocales
report

|UML Sequence Diagrams

Diagram frames in UML sequence diagrams are used to
support - among others - conditional and looping
constructs.
Frames have an operator and a guard.

26

Diagram Frame ~dt. (kombiniertes) Fragment

:System:Cashier

enterItem(itemId, quantity)

description, price, total

loop [more items]

E x a m
p l e

|UML Sequence Diagrams
How to model the iteration over a collection?

27

Modeling task: Calculate the total of a sale by summing up the
sub totals for each sales line item.

|UML Sequence Diagrams
Use a UML loop frame to iterate over a collection.

28

:Sale
t = getTotal

st = getSubTotal

lineItems[i] :
SalesLineItem

[0 < i < lineItems.size]loop

i++

Modeling task: Calculate the total of a sale by summing up the
sub totals for each sales line item.

|UML Sequence Diagrams
Use a UML loop frame to iterate over a collection.

29

:Sale
t = getTotal

st = getSubTotal

lineItems[i] : SalesLineItem

[for each sales line item]loop

Modeling task: Calculate the total of a sale by summing up the
sub totals for each sales line item.

|UML Sequence Diagrams
Java code corresponding to a UML loop frame.

30

public class Sale {

	 private List<SalesLineItem> lineItems
= new ArrayList<SalesLineItem>();

	 public Money getTotal() {
	 	 Money t = new Money();
	 	 Money st = null;
	 	 for (SalesLineItem lineItem : lineItems) {
	 	 	 st = lineItem.getSubtotal();
	 	 	 t.add(st);
	 	 }
	 	 return t;
	 }

}

:Sale
t = getTotal

st = getSubTotal

lineItems[i] : SalesLineItem

[for each sales line item]loop

Modeling task: Calculate the total of a sale by summing up the
sub totals for each sales line item.

|UML Sequence Diagrams

How to model the sending of a message only if a
guard condition matches?

31

Modeling task: Get the sum of all sales that happened today
after 18:00 o’clock.

|UML Sequence Diagrams

Use a UML opt frame to model the sending of a
message if the guard condition matches.

32

:Register
r = getTotal(startDate)

t = getTotal

sales[i] : Sale

[for each sale]loop

opt

date = getDate

[startDate < date]

Frames can be nested.

Modeling task: Get the sum of all sales that happend today
after 18:00 o’clock.

|UML Sequence Diagrams
How to model mutually exclusive alternatives?

33

Modeling task: A register should be able to handle credit card
payments and cash payments.

|UML Sequence Diagrams

Use the UML alt frame to model between 2 and n
mutually exclusive alternatives.

34

:Register
makePayment(type,sale)

create

:CreditCardPayment

[type = CreditCardPayment]alt

:CashPayment

[type = CashPayment]

create

Modeling task: A register should be able to handle credit card
payments and cash payments.

|UML Sequence Diagrams

Diagram frames in UML sequence diagrams are used to
support - among others - conditional and looping
constructs.
Frames have an operator and a guard.

35

Diagramm Frame ~dt. (kombiniertes) Fragment

:System:Cashier

enterItem(itemId, quantity)

description, price, total

loop [more items]

In general, sequence
diagrams are not really

well suited to show looping
and conditional behavior.

Activity diagrams and
code may be alternatives.

|UML Sequence Diagrams

An interaction occurrence (interaction use) is a
reference to an interaction within another interaction.

36

References are used to simplify a diagram and factor
out a portion into another diagram or to enable
reuse.

Modeling task: We want to calculate the store’s overall total.

|UML Sequence Diagrams

given

An interaction occurrence (interaction use) is a
reference to an interaction within another interaction.

37

:Register
r = getTotal(startDate)

sales[i] : Sale

t = getTotal

loop

opt

date = getDate

[for each sale]

[startDate < date]

|UML Sequence Diagrams

An interaction occurrence (interaction use) is a
reference to an interaction within another interaction.

38

given

:Register
r = getTotal(startDate)

t = getTotal

sales[i] : Sale

[for each sale]loop

opt

date = getDate

[startDate < date]

sd CalculatePerRegisterTotal

sd = sequence diagram

|UML Sequence Diagrams

An interaction occurrence (interaction use) is a
reference to an interaction within another interaction.

39

:Register
r = getTotal(startDate)

t = getTotal

sales[i] : Sale

[for each sale]loop

opt

date = getDate

[startDate < date]

sd CalculatePerRegisterTotal

|UML Sequence Diagrams

An interaction occurrence (interaction use) is a
reference to an interaction within another interaction.

40

:Register
r = getTotal(startDate)

t = getTotal

sales[i] : Sale

[for each sale]loop

opt

date = getDate

[startDate < date]

sd CalculatePerRegisterTotal

:Store :Register

r = getTotal(startDate)

sales[i] : Sale

CalculatePerRegisterTotal
ref

mr = managementReport

...

|UML Sequence Diagrams

How to model the sending of asynchronous
messages?
How to model objects that have their own thread of
execution?

41

Modeling task: The log information should automatically be
collected and processed in the background.

|UML Sequence Diagrams

Asynchronous messages are messages that don’t
block.
An active object is an object where each instance
runs on and controls its own thread of execution.

42

:Register
create

create
:LogManager

run

Asynchronous messages are
shown using stick arrows.

Active objects are modeled using double vertical
lines on the left and right side of the lifeline boxes.

Modeling task: The log information should automatically be
collected and processed in the background.

UML Communication Diagrams

|UML Communication Diagrams
Links and Messages in Communication Diagrams

• A link is a connection path between two objects (it is
an instance of an association)
A link indicates that some form of navigation and visibility between the
objects is possible.

• Each message between objects is represented with a
message expression and a small arrow indicating the
direction of the message
Sequence numbers are added to show the sequential order of
messages in the current thread of control; the starting message is
often not numbered.

44

:Register :Sale

makePayment ↓

1: makePayment(cashTendered) →
2: getTaxes →
2.1. getDate ←

|UML Communication Diagrams
Links and Messages in Communication Diagrams

• Modeling self messages

45

:Register

makePayment ↓

1: verify →

|UML Communication Diagrams
Alternative Notations for Modeling Instance Creation

46

1: create(cashier) →
:Register :Sale

:Register :Sale{new}

:Register :Sale

1: create(cashier) →

«create»
1: make(cashier) →

If an unobvious creation message name is used,
the message may be stereotyped for clarity.

Create message, with optional
initializing parameters. This will normally

be interpreted as a constructor call.

|UML Communication Diagrams

Message Number Sequencing
The initial message ist not numbered to make the numbering easier to comprehend.

47

1: j_msg →
:A :B

:C

:D

i_msg →

first message 1.1: k_msg ↓
2.1: l_msg ↑

2.2: m_msg ↓

2: n_msg →

second message
third message

forth message

fifth message

sixth message

|UML Communication Diagrams

The message is only sent if the condition evaluates to true. The
condition is written in square brackets. In case of modeling
mutually exclusive message conditional path letters are
prepended.

Modeling Conditional Messages
48

1a [test1]: msg2 →
:A :B

:C:D

msg →

1a.1: msg3 ↓1b [not test1]: msg4 ↓

:E

2: msg6 ↑

1b.1: msg5 →

Small letters are
sometimes used to

mark methods that are
executed in parallel.

|UML Communication Diagrams
Messages to Class Objects

49

:Sale «metaclass»
Calendar

makePayment ↓

1: locs = getAvailableLocales →

e.g. to format the date as either
 3/2/2009 or 2.3.2009

UML Communication vs.
UML Sequence Diagrams

|UML Interaction Diagrams
Strengths and Weaknesses Interaction Diagrams

51

Type Strengths Weaknesses

Sequence
Diagram

Communication
Diagram

✓clearly shows
sequence or time
ordering of messages

✓large set of detailed
notation options

- forced to extend to
the right when
adding new objects;
consumes horizontal
space

✓space economical -
flexibility to add new
objects in two
dimensions

-more difficult to see
sequence of
messages

- fewer notational
options

|UML Interaction Diagrams
Strengths and Weaknesses Interaction Diagrams

52

Type Strengths Weaknesses

Sequence

Communication
Diagram

✓clearly shows
sequence or time
ordering of messages

✓large set of detailed
notation options

- forced to extend to
the right when
adding new objects;
consumes horizontal
space

✓space economical -
flexibility to add new
objects in two
dimensions

-more difficult to see
sequence of
messages

- fewer notational
options

UML tools often emphasize sequence
diagrams, because of their greater

notational power.

Summary

|Goal of the Lecture 54

The goal of this lecture is to enable you to
systematically carry out small(er) software

projects that produce quality software.

• Modeling the dynamic behavior is often more rewarding than modeling the static
structure w.r.t. understanding a domain

• Modeling the dynamic behavior is often particularly useful if the control-flow is more
involved; but only draw the part that is relevant to understand the problem at hand

• The UML is often used informally - this is OK if everyone interprets the diagrams in the
same way

|Goal of the Lecture 55

The goal of this lecture is to enable you to systematically carry out small(er)
commercial or open-source projects.

Project
Start

Project
End

Requirements Management
Domain Modeling

Modeling
…
Software Project Management

Testing
Modeling

