
Dr. Michael Eichberg
Software Engineering
Department of Computer Science
Technische Universität Darmstadt

Introduction to Software Engineering

System Sequence Diagrams
The following slides make extensive use of material 
from: 
Applying UML and Patterns, 3rd Edition; Craig 
Larman; Prentice Hall



|System Sequence Diagram

A system sequence diagram (SSD) illustrates input and 
output events. 

•An SSD shows – for one particular scenario of a use case –
• the events that external actors generate, 
• their order, and 
• inter-system events

• The system is treated as a black-box
•SSDs are derived from use cases; SSDs are often drawn for 

the main success scenarios of each use case and frequent 
or complex alternative scenarios
•SSDs are used as input for object design

2



|Object-oriented Design 3

• System operations are the operations that the system 
as a black box component offers in its public interface. 
These are high-level operations triggered by an 
external input event / system event generated by an 
external actor

• During system behavior analysis, system operations 
are assigned to a conceptual class System

System Events and System Operations



|Object-oriented Design

The system operations are shown in the system 
sequence diagram (SSD).

4

• To provide more analysis detail on the effect of the system 
operations implied use cases, (System) Operation 
Contracts may be considered

:System:Cashier

enterItem(itemId, quantity)

makeNewSale

description, total

loop [more items]

endSale

makePayment (amount)



|Object-oriented Design
Operation Contract Template

5

Operation:
Name of the operation and parameters.

Cross References:
Use cases this operation can occur with.

Preconditions:
Noteworthy / non-trivial assumptions about 
the system or objects in the domain model 
before execution of the operation.

Postconditions:
The state of the objects in the domain model 
after completion of the operation. Domain 
model state changes include:
▶!instances created, 
▶!associations formed or broken, 
▶!attributes changed.
[Postconditions should be stated in the 
past tense.]

Helpful when assigning 

responsibilities to 
classes 

(More details will follow).



|Object-oriented Design
Operation Contract for “enterItem()”

6

Operation:
enterItem(itemId: ItemId, quantity: Integer)

Cross References:
Use Cases: Process Sale

Preconditions:
There is a sale underway.

Postconditions:
►!A SalesLineItem instance (SLI) was created.

(instance creation)
►!SLI was associated with the current Sale.

(association formed)
►!SLI was associated with a ProductDescription, 

based on itemId match.
(association formed)



|System Sequence Diagram
Example of an SSD for the Process Sale Scenario

7

Use Case: Process Sale Scenario - Main Success Story
1. Cashier starts new sale

2. Cashier enters item identifier

3. System records sale line item and presents item description,
price and running total
Steps 2 and 3 are repeated until all items are processed.

4. System presents total with taxes calculated

5. Cashier tells Customer the total and asks for payment

6. Customer pays and System handles payment



|System Sequence Diagram

:System:Cashier

Process Sale Scenario

enterItem(itemId, quantity)

makeNewSale

description, price, total

endSale

makePayment (amount)

total with taxes

change due, receipt

Example of an SSD for the Process Sale Scenario
8

SSDs are drawn using UML’s sequence diagram notation. The name of each 
event should state the intention (e.g. “enterItem(itemId)” vs. “scan(itemId)”).

Communication Partners
M

es
sa

ge
 O

rd
er



|System Sequence Diagram

:System:Cashier

Process Sale Scenario

enterItem(itemId, quantity)

makeNewSale

description, price, total

endSale

makePayment (amount)

total with taxes

change due, receipt

Example of an SSD for the Process Sale Scenario
9

SSDs are drawn using UML’s sequence diagram notation. The name of each 
event should state the intention (e.g. “enterItem(itemId)” vs. “scan(itemId)”).

Basic SSD

an external actor to the system a message with parameters

return value(s)
(optional if nothing is returned)



|System Sequence Diagram
Example of an SSD for the Process Sale Scenario

10

Use Case: Process Sale Scenario - Main Success Story
1. Cashier starts new sale

2. Cashier enters item identifier

3. System records sale line item and presents item description,
price and running total
Steps 2 and 3 are repeated until all items are processed.

4. System presents total with taxes calculated

5. Cashier tells Customer the total and asks for payment

6. Customer pays and System handles payment



|System Sequence Diagram
Example of an SSD for the Process Sale Scenario

11

Use Case: Process Sale Scenario - Main Success Story
1. Cashier starts new sale

2. Cashier enters item identifier

3. System records sale line item and presents item description,
price and running total
Steps 2 and 3 are repeated until all items are processed.

4. System presents total with taxes calculated

5. Cashier tells Customer the total and asks for payment

6. Customer pays and System handles payment



|System Sequence Diagram
Visualizing SSDs - Excerpt From the POS Domain

12

:System:Cashier

enterItem(itemId, quantity)

description, price, total

loop [more items]

Process Sale Scenario



|System Sequence Diagram
“Complete” SSD for the Process Sale Scenario

13

loop [more items]

:System:Cashier

Process Sale Scenario

enterItem(itemId, quantity)

makeNewSale

description, price, total

endSale

makePayment (amount)

total with taxes

change due, receipt



|Using UML 14

Drawing UML diagrams is a reflection of 
making decisions about the design.

What matters are the fundamental object 
design skills - not knowing how to draw UML.



Summary



|Goal of the Lecture 16

The goal of this lecture is to enable you to 
systematically carry out small(er) software 

projects that produce quality software. 

• SSDs are used as input for object design and provide more details



|Goal of the Lecture 17

The goal of this lecture is to enable you to systematically carry out small(er) 
commercial or open-source projects. 

Project
Start

Project
End

Requirements Management
Domain Modeling

Domain Modeling
…

Software Project Management

Testing
Modeling

Modeling


