
Dr. Michael Eichberg
Software Technology Group
Department of Computer Science
Technische Universität Darmstadt

Introduction to Software Engineering

On to
Object-oriented Design

|Object-oriented Design

A popular way of thinking about the design of software
objects and also large scale components is in terms of
responsibilities, roles and collaborations.

2

|Object-oriented Design 3

date
time

Sale

amount
Payment

quantity

Sales LineItem

Item

address
name

Store

Register

1

*
1

0..1
1..*

1

0..1

1

Captured-on ▶
Paid-by

Records-sale-of

Houses

Stocked-in

Contained-in

:System
:Cashier

enterItem(itemId, quantity)

makeNewSale

description, total
loop [more items]

endSale

makePayment (amount)

Which class / object should have which
responsibility?

|Object-oriented Design
Object-oriented Design

• Artifacts that are used as input for the object-oriented
design
• a simple domain (analysis / conceptual) model does

exist

• descriptions of use-cases (user stories) which are under
development in the current iterative step

• we do have a system sequence diagram

• Next steps:
Build interaction diagrams for system operations of
the use-cases at hand by applying guidelines and
principles for assigning responsibilities

4

|Object-oriented Design
Responsibility for System Operations

• During system behavior analysis (e.g. of the POS
system), system operations are assigned to a
conceptual class (e.g. System)
Does not imply that there will be a class System in the design.

• A controller class is assigned to perform the system
operations

5

endSale()
enterItem()
makePayment()

System

|Object-oriented Design
Responsibility for System Operations

• During system behavior analysis (e.g. of the POS
system), system operations are assigned to a
conceptual class (e.g. System)
Does not imply that there will be a class System in the design.

• A controller class is assigned to perform the system
operations

6

Who should be responsible for

handling system operations?

What first object beyond the UI

layer receives and coordinates

a system operation?

endSale()
enterItem()
makePayment()

System

|Object-oriented Design
Responsibility for System Operations

• During system behavior analysis (e.g. of the POS
system), system operations are assigned to a
conceptual class (e.g. System)
Does not imply that there will be a class System in the design.

• A controller class is assigned to perform the system
operations

7

Who should be responsible for

handling system operations?

What first object beyond the UI

layer receives and coordinates

a system operation?

endSale()
enterItem()
makePayment()

System

The system operations become
the starting messages entering
the controllers for domain layer
interaction diagrams.

|Object-oriented Design
Interaction Diagrams for System Operations

8

• Create a separate diagram for each system operation
in the current development cycle

• Use the system operation, e.g., enterItem(), as
starting message

• If a diagram gets complex, split it into smaller
diagrams

• Distribute responsibilities among classes:
• from the conceptual model and may be others added

during object design
The classes will collaborate for performing the system
operation.

• based on the description of the behavior of system
operations

Foundations of
Object-oriented Design

|Responsibility

R. Martin
Each responsibility is an axis of change.
When the requirements change, a change will manifest
through a change in responsibility amongst the classes.
If a class has multiple responsibilities, it has multiple
reasons to change.

10

Responsibility

|Object-oriented Design - Responsibility

Assigning Responsibility to classes

is one of the most important activities during
the design. Patterns, idioms, principles etc. help
in assigning the responsibilities.

11

© US Department of Defense

|Object-oriented Design - Responsibility 12

In Responsibility-driven Design (RDD) we think of
software objects as having responsibilities.
The responsibilities are assigned to classes of objects
during object-design.

|Object-oriented Design - Responsibility 13

Responsibilities are related to the obligations or
behavior of an object in terms of its role.
We can distinguish two basic types of responsibilities.

• Doing responsibilities
• Doing something itself

E.g. creating an object or doing a calculation.
• Initiating action in other objects
• Controlling and coordinating activities in other objects
• Example: a Sale object is responsible for creating SalesLineItem objects

• Knowing responsibilities
• Knowing about private encapsulated data
• Knowing about related objects
• Knowing about things it can derive or calculate
• Example: a Sale is responsible for knowing its total

|Object-oriented Design - Responsibility

A responsibility is not the same thing as a method.

Responsibilities are assigned to objects by using
methods of classes to implement them.

• To implement a responsibility, methods act alone or
collaborate with other methods (of other objects):
• 1 method in 1 object,
• 5 methods in 1 object,
• 50 methods across 10 objects

14

depending on the
granularity of the

responsibility}

|Object-oriented Design - Responsibility

A responsibility is not the same thing as a method.

Responsibilities are assigned to objects by using
methods of classes to implement them.

Examples:
• Providing access to data

bases may involve dozens
of classes

• Print a sale may involve
only a single or a few
methods

15

Assigning responsibilities to
classes is one of the most

important activities during the
design.

Patterns, idioms, principles etc.
help in assigning the

responsibilities.

|Object-oriented Design - Responsibility 16

?
?

??

? ?

?

?

?

How does one determine the assignment of responsibilities
to various objects?

|Object-oriented Design - Responsibility 17

There is a great variability in responsibility assignment :
▶ Hence, “good” and “poor” designs, “beautiful” and “ugly” designs, “efficient” and “inefficient” designs.
▶ Poor choices lead to systems which are fragile and hard to maintain, understand, reuse, or extend!

How does one determine the assignment of responsibilities
to various objects?

|Object-oriented Design - Coupling 18
Coupling

Coupling measures the strength of
dependence between classes and
packages.
▶ Class C1 is coupled to class C2 if C1

requires C2 directly or indirectly.
▶ A class that depends on 2 other classes

has a lower coupling than a class that
depends on 8 other classes

Coupling is an
evaluative principle!

|Object-oriented Design - Coupling
Common Forms of Coupling in Java

19

• Type X has an attribute that refers to a type Y instance
or type Y itself
class X{ private Y y = …}
class X{ private Object o = new Y(); }

• A type X object calls methods of a type Y object
class Y{f(){;}}
class X{ X(){new Y.f();}}

• Type X has a method that references an instance of
type Y (E.g. by means of a parameter, local variable, return type,…)
class Y{}
class X{ X(y Y){…}}
class X{ Y f(){…}}
class X{ void f(){Object y = new Y();}}

• Type X is a subtype of type Y
class Y{}
class X extends Y{}

• ...

|Coupling
Coupling in Java - Exemplified

Class QuitAction is
coupled with:
•…ActionListener
•…ActionEvent
• java.lang.Override
• java.lang.System
• java.lang.Object

20

package de.tud.simpletexteditor;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class QuitAction implements ActionListener
{

	 @Override
	 public void actionPerformed(ActionEvent e)
	 {
	 	 System.exit(0);
	 }

}

Example Source Code

|Object-oriented Design - Coupling 21
Coupling

• High Coupling
A class with high coupling is undesirable, because...
• changes in related classes may force local changes

• harder to understand in isolation

• harder to reuse because its use requires the inclusion of
all classes it is dependent upon

• ...

|Object-oriented Design - Coupling 22
Coupling

• ...
• Low Coupling

Low coupling supports design of relatively
independent, hence more reusable, classes
• Generic classes, with high probability for reuse, should

have especially low coupling

• Very little or no coupling at all is also not desirable

• Central metaphor of OO: a system of connected objects
that communicate via messages

• Low coupling taken to excess results in active objects
that do all the work

|Object-oriented Design - Coupling 23
Coupling

• ...
• Low Coupling

Low coupling supports design of relatively
independent, hence more reusable, classes
• Generic classes, with high probability for reuse, should

have especially low coupling

• Very little or no coupling at all is also not desirable

• Central metaphor of OO: a system of connected objects
that communicate via messages

• Low coupling taken to excess results in active objects
that do all the work

High coupling to stable

elements and to pervasive

elements is seldom a
problem.

|Object-oriented Design - Coupling 24
Coupling

• ...
• Low Coupling

Low coupling supports design of relatively
independent, hence more reusable, classes
• Generic classes, with high probability for reuse, should

have especially low coupling

• Very little or no coupling at all is also not desirable

• Central metaphor of OO: a system of connected objects
that communicate via messages

• Low coupling taken to excess results in active objects
that do all the work

Beware: the quest for low coupling to achieve reusability in a future (mythical!) project may lead to needless complexity and increased project cost.

|Object-oriented Design - Cohesion
Cohesion

Cohesion measures the strength of the relationship
amongst elements of a class
All operations and data within a class should
“naturally belong” to the concept that the class
models

25

Cohesion is an
evaluative principle!

|Cohesion
Cohesion in Java - Exemplified

Analysis of the
cohesion of
SimpleLinkedList
• the constructor uses

both fields

• head uses only the
field value

• tail uses only next
• head and tail are

simple getters; they
do not mutate the
state

26

public class SimpleLinkedList {

	 private final Object value;
	 private final SimpleLinkedList next;
	
	 public SimpleLinkedList(
	 	 	 Object value, SimpleLinkedList next
) {
	 	 this.value = value;	this.next = next;
	 }

	 public Object head() {
	 	 return value;
	 }

	 public SimpleLinkedList tail() {
	 	 return next;
	 }

}

Example Source Code

|Cohesion
Cohesion in Java - Exemplified

Analysis of the
cohesion of
ColorableFigure
• lineColor is used

only by its getter
and setter

• fillColor is used
only by its getter
and setter

• lineColor and
fillColor have no
interdependency

27

import java.awt.Color;

abstract class ColorableFigure implements Figure {

	 private Color lineColor = Color.BLACK;
	 private Color fillColor = Color.BLACK;

	 public Color getLineColor() {	return lineColor; }
	 public void setLineColor(Color c) {
	 	 lineColor = c;
	 }

	 public Color getFillColor() {	return fillColor; }
	 public void setFillColor(Color c) {
	 	 this.fillColor = c;
	 }

}

Example Source Code

|Object-oriented Design - Cohesion
Types of Cohesion

• Coincidental
No meaningful relationship amongst elements of a
class.

• Logical cohesion (functional cohesion)
Elements of a class perform one kind of a logical
function.
E.g., interfacing with the POST hardware.

• Temporal cohesion
All elements of a class are executed “together”.

28

|Object-oriented Design - Cohesion 29

Responsibility

Cohesion

To keep design complexity manageable, assign
responsibilities while maintaining high cohesion.

|Object-oriented Design - Cohesion

Classes with high cohesion can often be described by a simple
sentence.

30
Low Cohesion

•Classes with low cohesion are undesirable, because they
are...
• hard to comprehend,
• hard to reuse,
• hard to maintain - easily affected by change
• ...

|Object-oriented Design - Cohesion

Classes with high cohesion can often be described by a simple
sentence.

31
Low Cohesion

•Classes with low cohesion...
• often represent a very large-grain abstraction
• have taken responsibility that should have been delegated to

other objects

|Object-oriented Design 32

Design needs principles.

|

“
Object-oriented Design

The Single Responsibility Principle
Agile Software Development; Robert C. Martin; Prentice Hall, 2003

A class should have only one
reason to change.
I.e. a responsibility is primarily a reason for change.

33

!

|Object-oriented Design 34
Example: a Rectangle Class
The Single Responsibility Principle

+draw()
+area() : double

Rectangle

Graphical
Application

Computational
Geometry
Application

GUI

Does the Rectangle class have
a single responsibility or does it

have multiple responsibilities ?

|Object-oriented Design 35
Example: a Rectangle Class
The Single Responsibility Principle

+draw()
+area() : double

Rectangle

Graphical
Application

Computational
Geometry
Application

GUI

The Rectangle class has multiple responsibilities:
• Calculating the size of a rectangle; a mathematical model
• To render a rectangle on the screen; a GUI related functionality

Do you see any problems?

|Object-oriented Design 36
Example: a Rectangle Class
The Single Responsibility Principle

+draw()
+area() : double

Rectangle

Graphical
Application

Computational
Geometry
Application

GUI

Problems due to having multiple responsibilities:
• Reuse of the Rectangle class (e.g. in a math package) is hindered

due to the dependency on the GUI package
(GUI classes have to be deployed along with the Rectangle class)

• A change in the Graphical Application that results in a change of
Rectangle requires that we retest and redeploy the Rectangle class
in the context of the Computational Geometry Application

|Object-oriented Design 37
Example: Rectangle classes with single responsibilities
The Single Responsibility Principle

The solution is to separate the functionality for drawing a rectangle
and the functionality for doing calculations are separated.

+draw()

Rectangle

Graphical
Application

Computational
Geometry
Application

GUI
+area() : double

Geometric
Rectangle

Coupling? Cohesion?

|Object-oriented Design 38
Example: Handling Persistence
The Single Responsibility Principle

Do we need to change the Employee class?

+CalculatePay()
+Store(...)

Employee

Persistence
Subsystem

|Object-oriented Design 39
Example: Handling Persistence
The Single Responsibility Principle

+CalculatePay()
+Store(...)

Employee

Persistence
Subsystem

Two responsibilities:
• Business functionality
• Persistence related functionality

Do we need to change the Employee class?

|Object-oriented Design 40
Orthogonality

Two or more things are orthogonal if changes in one do not
affect any of the others; e.g. if a change to the database code
does not affect your GUI code, both are said to be orthogonal.

if z changes,
x and y remain
unchanged

x

y

z

Andrew Hunt and David Thomas; The Pragmatic Programmer; Addison-Wesley, 2000

GRASP
General Responsibility Assignment Principles

• The following slides make extensive use of material
from:
Applying UML and Patterns, 3rd Edition; Craig Larman;
Prentice Hall

|GRASPrinciples 42
Fundamental GRASPrinciples...

• Controller
• Creator
• (Information)Expert
• ...

The GRASPrinciples
are a learning aid.

|GRASP - Controller
GRASP - Controller - Candidates

• During system behavior analysis (e.g. of the POS
system), system operations are assigned to a
conceptual class (e.g. System)
Does not imply that there will be a class System in the
OO design.

• A class is assigned to perform these operations.

43

endSale()
enterItem()
makePayment()

System

Who should be responsible for handling system
operations?
What first object beyond the UI layer receives and
coordinates a system operation?

?

|GRASP - Controller
GRASP - Controller - Candidates

• Façade controller
A class that represents the overall
“system” or “business”

• Use Case controller
A class that represents an artificial
handler of all events of a use case

44

Candidates for

assigning

controller

responsibility.

:???
enterItem(itemId,quantity)→

:POST
enterItem(itemId,quantity)→

:Register
enterItem(itemId,quantity)→

:ProcessSaleHandler
enterItem(itemId,quantity)→

Facade: overall system

Real world actor

Use-case handler

|GRASP - Controller
GRASP - Controllers and High Cohesion

• Façade controllers are suitable when there are only a
“few” system events

• Use Case controller
These are not domain objects, these are artificial
constructs to support the system.
• Good when there are many system events across

several processes

• Possible to maintain state for the use case, e.g., to
identify out-of-sequence system events: a
makePayment before an endSale operation

45

|GRASP - Controller
GRASP - Controllers and Responsibility

• A controller should mostly coordinate activities

• Delegate to other objects work that needs to be done

• Signs of a bloated controller:
• Receives all system events

• Performs all tasks itself without delegating

• Has many attributes and maintains significant
information about the domain

• Duplicates information found in other objects

46

Split a bloated controller into use case controllers
- likely to help in maintaining low coupling and

high cohesion.

|GRASP - Controller
GRASP - Controllers and Presentation Layer

• UI objects and the UI layer should not have the
responsibility for handling system events
Examples that do not qualify as controllers:
“Window”, “Menu Item”, “Sensor”,...

• System operations should be handled by objects
belonging to the domain layer
This increases the reuse potential; “encapsulation” of
the business process.

47

|GRASP - Controller

GRASP - Controllers and Presentation Layer
Bad Design vs. Good Design

•A user-interface-as-controller design …
• reduces the opportunity to reuse domain process logic in

future applications
• it is bound to a particular interface that is seldom applicable

in other applications
• Placing system operation responsibility in a domain object

controller makes it easier ...
• to unplug the interface layer and use a different interface

technology
E.g. in case of multi-channel application.

• to run the system in an off-line “batch” mode

48

|GRASP - Controller

GRASP - Controllers and Presentation Layer
Bad Design

49

Pr
es

en
ta

tio
n

U
I L

ay
er

Ap
pl

ic
at

io
n

Lo
gi

c
D

om
ai

n
La

ye
r

Process Sale

Enter Item End Sale Make Payment

UPC

Quantity

Balance

:Cashier

:SaleJFrame

:Sale

presses
button

1: makeLineItem(...) →

actionPerformed(actionEvent) ↓

Implementation of
Business Logic

|GRASP - Controller

GRASP - Controllers and Presentation Layer
Good Design

50

Pr
es

en
ta

tio
n

U
I L

ay
er

Ap
pl

ic
at

io
n

Lo
gi

c
D

om
ai

n
La

ye
r

Process Sale

Enter Item End Sale Make Payment

UPC

Quantity

Balance

:Cashier

:SaleJFrame

:Sale:Register

presses
button

1: enterItem(itemId,quantity) ↓

1.1: makeLineItem(...) →

actionPerformed(actionEvent) ↓

Controller

|GRASP - Controller
GRASP - Controllers - Summary

System operations - identified during analysis - are assigned -
during design - to one or more non-UI classes called controllers

that define an operation for each system operation

51

endSale()
enterItem()
makePayment()

System endSale()
enterItem(...)
makeNewSale(...)
makePayment(...)

...
Register

System
operations
discovered
during
system behavior
analysis.

Allocation of system
operations during
design.

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

52

... ...
Preconditions None

Postconditions

•a Sale instance s was created
Instance creation

•s was associated with the Register
Association formed

•the attributes of s are initialized

System Operation
Contract

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

Choosing the Controller for makeNewSale

• What first object beyond the UI layer receives and
coordinates a system operation?

•A controller is the first object beyond the UI layer that is
responsible for receiving or handling a system operation
message.

53

Controller

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

Choosing the Controller for makeNewSale
54

date
time

Sale

amount
Payment

quantity

Sales
LineItem

Item

address
name

Store

Register

1

*
10..1

1..*

1

0..1

1

Captured-on ▶
Paid-by

Records-sale-of

Houses

Stocked-in
Contained-in

▶ A class that represents the overall
system, a root object, a
specialized device, or a major
subsystem:
▶ a Store object representing the

entire store
▶ a Register object (a specialized

device that the software runs
on)

▶ Represents a receiver or handler
of all system events of a use case
(artificial object):
▶ a ProcessSaleHandler object
▶ a ProcessSaleSession object

Possible Alternatives
(as Suggested by Controller)

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

Choosing the Controller for makeNewSale
55

date
time

Sale

amount
Payment

quantity

Sales
LineItem

Item

address
name

Store

Register

1

*
10..1

1..*

1

0..1

1

Captured-on ▶
Paid-by

Records-sale-of

Houses

Stocked-in
Contained-in

•Register would represent a
device façade controller
•Recall from the discussion

of Controller:
… Device façade
controllers are suitable
when there are only a
“few” system events...

Reasoning

Possible Alternatives
(as Suggested by Controller)

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

Choosing the Controller for makeNewSale
56

date
time

Sale

amount
Payment

quantity

Sales
LineItem

Item

address
name

Store

Register

1

*
10..1

1..*

1

0..1

1

Captured-on ▶
Paid-by

Records-sale-of

Houses

Stocked-in
Contained-in•Choosing a Store object

would lead to low cohesion
If we continue using Store
for everything.
•Choosing Store results in a

high representational gap

Reasoning

Possible Alternatives
(as Suggested by Controller)

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

Choosing the Controller for makeNewSale
57

date
time

Sale

amount
Payment

quantity

Sales
LineItem

Item

address
name

Store

Register

1

*
10..1

1..*

1

0..1

1

Captured-on ▶
Paid-by

Records-sale-of

Houses

Stocked-in
Contained-in

•Use-case controllers
(ProcessSaleHandler,
ProcessSaleSession) are
good when...
•there are many system

events across several
processes,
•it is necessary to identify

out-of-sequence system
events.

Reasoning

Possible Alternatives
(as Suggested by Controller)

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

Choosing the Controller for makeNewSale
58

date
time

Sale

amount
Payment

quantity

Sales
LineItem

Item

address
name

Store

Register

1

*
10..1

1..*

1

0..1

1

Captured-on ▶
Paid-by

Records-sale-of

Houses

Stocked-in
Contained-in

•Register would represent a
device façade controller.
… Device façade
controllers are suitable
when there are only a
“few” system events...
•Choosing Store results in low

cohesion and a high
representational gap.

•Use-case controller (e.g.
ProcessSaleHandler,
ProcessSaleSesion)

Conclusion

Possible Alternatives
(as Suggested by Controller)

|GRASP - Case Study

Example
Choosing the Controller for the other System Operations

59

Apply the same reasoning!

:System:Cashier

Process Sale Scenario

enterItem(itemId, quantity)

makeNewSale

description, price, total

loop [more items]

endSale

makePayment (amount)

total with taxes

change due, receipt

:Register
makeNewSale→

:Register
enterItem→

:Register
endSale→

:Register
makePayment→

Domain LayerUI Layer

System Sequence Diagram Interaction with the domain
layer object Register
(as suggested by the
Controller pattern)

|GRASP - Information Expert
GRASP - Information Expert

• What is the most basic, general principle of responsibility
assign?

• Assign a responsibility to an information expert, i.e., to
a class that has the information needed to fulfill that
responsibility.

60

|GRASP - Information Expert

GRASP - Information Expert - Example
Calculating the Grand Total

61

time
Sale

quantity

Sales
LineItem

Product
Description

* 1

1..*

1

Described-by

Contains

Given this conceptual model, who should be responsible for
calculating the grand total of a sale?

|GRASP - Information Expert

GRASP - Information Expert - Example
Calculating the Grand Total

62

Which class has the information needed for calculating the grand
total, i.e.,

▶ knowledge of all SalesLineItems, and

▶ their subtotals?

time
Sale

quantity

Sales
LineItem

Product
Description

* 1

1..*

1

Described-by

Contains

Given this conceptual model,
who should be responsible
for calculating the grand total
of a sale?

|GRASP - Information Expert

GRASP - Information Expert - Example
Calculating the Grand Total

63

time
Sale

quantity

Sales
LineItem

Product
Description

* 1

1..*

1

Described-by

Contains

Given this conceptual model,
who should be responsible
for calculating the grand total
of a sale?

Which class has the information needed for calculating the grand
total, i.e., knowledge of all SalesLineItems, and their subtotals?

The Sale object possesses the knowledge about all
SaleLineItems. Hence, Sale will be assigned the
responsibility.

|GRASP - Information Expert

GRASP - Information Expert - Example
Calculating the Sub Total

64

Which class has the information needed for calculating the
subtotals?

time
Sale

:Saletotal() →

quantity

Sales
LineItem

price

Product
Description

* 1

1..*

1

Described-by

Contains

|GRASP - Information Expert

GRASP - Information Expert - Example
Calculating the Sub Total

65

time
Sale

:Saletotal() →

quantity

Sales
LineItem

price

Product
Description

* 1

1..*

1

Described-by

Contains

Required information: quantity and price of each SalesLineItem
▶ quantity is available with SalesLineItem
▶ price is available with ProductDescription

Which class has the
information needed for
calculating the subtotals?

|GRASP - Information Expert

GRASP - Information Expert - Example
Calculating the Sub Total

66

getPrice()

price
...

Product
Description

total()
time

Sale

getSubtotal()
quantity
SaleLinesItem

Product
Description

:Sale lineItems[i]:
SaleLinesItem

1.1: p = getPrice() ↓

t = getTotal → 1 *:st = getSubTotal →

Design Class Responsibility
Sale knows sale total
SalesLineItem knows line item subtotal
ProductDescription knows product price

Which class has the
information needed for
calculating the subtotals?

|GRASP - Information Expert
GRASP - Information Expert - Summary

• Fulfillment of a responsibility often requires interaction
amongst several objects (4 in our example)
There are many semi-experts who collaborate in performing a task.
•Use of (Information) Expert guideline allows us to retain

encapsulation of information
Information hiding
• It often leads to “lightweight” classes collaborating to fulfill

a responsibility

67

|GRASP - Creator 68

Who should be responsible for creating an instance of a
class ?

|GRASP - Creator 69

Assign to class B the responsibility to create an object of
class A if the following is true:
•B aggregates or (closely) uses objects of type A
•B records A
•B has the data to be passed to A when A is created

B is an expert in the creation of A

Who should be responsible for creating an
instance of a class ?

|GRASP - Creator 70
GRASP - Creator

Who should be responsible for creating a SalesLineItem?

time
Sale

quantity

Sales
LineItem

price

Product
Description

* 1

1..*

1

Described-by

Contains

|GRASP - Creator 71
GRASP - Creator

•Sale contains SalesLineItem objects; hence, Sale is a good
candidate for creating a SalesLineItem

Who should be responsible for creating a SalesLineItem?

time
Sale

quantity

Sales
LineItem

price

Product
Description

* 1

1..*

1

Described-by

Contains

|GRASP - Creator 72
GRASP - Creator

Communication diagram after assigning the responsibility
for creating SalesLineItems to Sale.

:Sale

:SalesLineItem

1: create(quantity) ↓ makeLineItem(...)
total()

time
Sale

Class DiagramCommunication Diagram

makeLineItem(quantity) →

|GRASP - Creator 73
GRASP - Creator

Which class should be responsible for creating a Payment?

Register creates an instance of
Payment and passes it to Sale.
(Suggested by Creator as Register
records Payments.)

Sale creates an instance of
Payment.
(Suggested by Creator as Sale uses
Payment.

Variant A Variant B

:Sale

p:Payment
1: create(quantity) →

2: addPayment(p) →

:Register

makePayment ↓

:Sale

p:Payment

1.1: create() ↓

1: makePayment() →
:Register

makePayment ↓

|GRASP - Creator 74
GRASP - Creator

Register creates an instance of
Payment and passes it to Sale.

Sale creates an instance of
Payment.

:Sale

p:Payment
1: create(quantity) →

2: addPayment(p) →

:Register

makePayment ↓

Using this variant might lead to a
non-cohesive class. If there are
several system operations, and
Register does some work related to
each, it will be a large non-
cohesive class.

This variant supports both: high
cohesion and low coupling.

Variant A Variant B

:Sale

p:Payment

1.1: create() ↓

1: makePayment() →
:Register

makePayment ↓

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

75

... ...
Preconditions None

Postconditions

•a Sale instance s was created
Instance creation

•s was associated with the Register
Association formed

•the attributes of s are initialized

System Operation
Contract

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

Creating a New Sale Object

• Who should be responsible for creating a new instance
of some class?

76

Creator

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

Creating a New Sale Object
77

From the contract:
“… a Sale instance was
created”.
Creator suggests a class
that...
▶ aggregates,
▶ contains or
▶ records
the object (Sale) to be
created.

date
time

Sale

amount
Payment

quantity

Sales
LineItem

Item

address
name

Store

Register

1

*
10..1

1..*

1

0..1

1

Captured-on ▶
Paid-by

Records-sale-of

Houses

Stocked-inContained-in

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

Creating a New Sale Object
78

From the contract:
“… a Sale instance was
created”.
Creator suggests a class
that...
▶ aggregates,
▶ contains or
▶ records
the object (Sale) to be
created.

date
time

Sale

amount
Payment

quantity

Sales
LineItem

Item

address
name

Store

Register

1

*
10..1

1..*

1

0..1

1

Captured-on ▶
Paid-by

Records-sale-of

Houses

Stocked-inContained-in

No Candidate

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

Creating a New Sale Object
79

From the contract:
“… a Sale instance was
created”.
Creator suggests a class
that...
▶ aggregates,
▶ contains or
▶ records
the object (Sale) to be
created.

date
time

Sale

amount
Payment

quantity

Sales
LineItem

Item

address
name

Store

Register

1

*
10..1

1..*

1

0..1

1

Captured-on ▶
Paid-by

Records-sale-of

Houses

Stocked-inContained-in

No Candidate

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

Creating a New Sale Object
80

From the contract:
“… a Sale instance was
created”.
Creator suggests a class
that...
▶ aggregates,
▶ contains or
▶ records
the object (Sale) to be
created.

date
time

Sale

amount
Payment

quantity

Sales
LineItem

Item

address
name

Store

Register

1

*
10..1

1..*

1

0..1

1

Captured-on ▶
Paid-by

Records-sale-of

Houses

Stocked-inContained-in

No Candidate

|GRASP - Case Study

Example
Designing makeNewSale of the ProcessSale Use Case

81

Since a Sale will also contain SalesLineItems it is necessary
to further create a List object for storing the sale line
items.

From the contract:
“...the attributes of [the newly created Sale instance]
are initialized.”

:Sale

:Register
makeNewSale

lineItems :
List<SalesLineItem>

create

create

Interaction diagram showing the creation dependencies.

Design Heuristics
• J. Riel; Object-Oriented Design Heuristics; Addison-

Wesley, 1996

|Design Heuristics
Design Heuristics

• Design Heuristics help to answer the question:
“Is it good, bad, or somewhere in between?”

• Object-Oriented Design Heuristics offer insights into
object-oriented design improvement

• The following guidelines are language-independent
and allow to rate the integrity of a software design

• Heuristics are not hard and fast rules; they are meant
to serve as warning mechanisms which allows the
flexibility of ignoring the heuristic as necessary

• Many heuristics are small tweakings on a design and
are local in nature
A single violation rarely causes major ramifications on the entire
application.

83

|Design Heuristics 84

Two areas where the object-oriented paradigm can
drive design in dangerous directions...
• ...poorly distributed systems intelligence

The God Class Problem
• ...creation of too many classes for the size of the

design problem
Proliferation of Classes
(Proliferation =dt. starke Vermehrung)

|Design Heuristics

If you violate this heuristic your design tends to be more fragile.

A Very Basic Heuristic
85

All data in a base class should be private; do not use non-private
data.
Define protected accessor methods instead.

|Design Heuristics
A Very Basic Heuristic

86

public class Line {
	 // a "very smart developer" decided:
	 // p and v are package visible to enable efficient access
	 /*package visible*/ Point p;
	 /*package visible*/ Vector v;
	 public boolean intersects(Line l) {…}
	 public boolean contains(Point p) {…}
}

Line l1 = …;
Line l2 = …;
// check if both lines are parallel
if (l1.v.equals(l2.v)) {…}

Some code in the same
package that uses Line

objects.

Implementation of a
Line class as part of a

math library.

All data in a base class should be private; do not use non-private
data.
Define protected accessor methods instead.

|Design Heuristics
A Very Basic Heuristic

87

public class Line {
	 /*package visible*/ Point p1;
	 /*package visible*/ Point p2;
	 public boolean intersects(Line l) {…}
	 public boolean contains(Point p) {…}
}

Line l1 = …;
Line l2 = …;
// check if both lines are parallel
if (l1.v.equals(l2.v)) {…}

The change breaks our
code.

Now, assume the
following change to the
implementation of Line.

The public interface
remains stable - just

implementation
details are changed.

All data in a base class should be private; do not use non-private
data.
Define protected accessor methods instead.

|Design Heuristics
A Very Basic Heuristic

88

public class Line {
	 private Point p;
	 private Vector v;
	 public boolean intersects(Line l) {…}
	 public boolean contains(Point p) {…}
	 protected Vector getVector() { return v; };
}

Line l1 = …;
Line l2 = …;
// check if both lines are parallel
if (l1.getVector().equals(l2.getVector())) {…}

“Better design.”

Some code in the
same package that
uses Line objects.

All data in a base class should be private; do not use non-private
data.
Define protected accessor methods instead.

|The God Class Problem
The God Class Problem

89

Beware of classes that have too much noncommunicating behavior,
that is, methods that operate on a proper subset of the data
members of a class. God classes often exhibit much
noncommunicating behavior.

Beware of classes that have many accessor methods defined in
their public interface. Having many implies that related data and
behavior are not kept in one place.

Distribute system intelligence as uniformly as possible, that is, the
top-level classes in a design should share the work uniformly.

|The God Class Problem - Behavioral Form
The Problem of Accessor Methods

90

▶ The class Point has accessor operations in the public interface.
Are there any problems with this design of Point, you can think of?

▶ Is Point eventually giving too much implementation details away to

clients?

+getX()
+setX(int)
+getY()
+setY(int)

Point

|The God Class Problem - Behavioral Form
The Problem of Accessor Methods

91

▶ The class Point has accessor operations in the public interface.
Are there any problems with this design of Point, you can think of?

▶ Is Point eventually giving too much implementation details away to

clients?

+getX()
+setX(int)
+getY()
+setY(int)

Point

The answer to this question is: “No, accessor methods do not
necessarily expose implementation details.”

|The God Class Problem - Behavioral Form
The Problem of Accessor Methods

92

▶ Accessor methods indicate poor encapsulation of related data
and behavior; someone is getting the x- and y-values of Point
objects to do something with them – executing behavior that is
related to points - that the class Point is not providing

▶ Often the client that is using accessor methods is a god class
capturing centralized control that requires data from the
mindless Point object

+getX()
+setX(int)
+getY()
+setY(int)

Point

But, still there is an issue. What is it?

|The God Class Problem - Behavioral Form
The Problem of Accessor Methods

93

public class Line {
	 private Point p;
	 private Vector v;
	 public boolean intersects(Line l) {…}
	 public boolean contains(Point p) {…}
	 protected Vector getVector() {return v;};
	 public boolean isParallel(Line l) {…};
}

Line l1 = …;
Line l2 = …;
// check if both lines are parallel
if (l1.isParallel(l2)) {…}

Reconsider the
Line class.

Some code in
the same

package that
uses Line
objects.

|The God Class Problem - Behavioral Form

Two Reasonable Explanations For the Need of Accessor
Methods...

94

▶ … a class performing the gets and sets is implementing
a policy
(policy = dt. Verfahren(-sweise))

▶… or it is in the interface portion of a system consisting
of an object-oriented model and a user interface

|The God Class Problem - Behavioral Form

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

95

Student

Course

Captures static information
about students, e.g., name,
identification number, list of
courses (s)he has taken, etc.

Captures static information
about the course objects,
e.g., the course number,
description, duration,
minimum and maximum
number of students, list of
prerequisites, etc.

|The God Class Problem - Behavioral Form

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

96

Student

Course
Captures static and dynamic
information related to a
particular section of a given
course, e.g., the course
being offered, the room and
schedule, instructor, list of
attendees, etc.

CourseOffering

|The God Class Problem - Behavioral Form

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

97

s:Student:Course :CourseOffering
1: c = getCourses() →2: checkPrereq(c) ←

addStudent(s) ↓

First design for checking the prerequisites of students

|The God Class Problem - Behavioral Form

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

98

s:Student:Course :CourseOffering
1: c = getCourses() →2: checkPrereq(c) ←

addStudent(s) ↓

s:Student:Course :CourseOffering
2: check(p) →1: p = getPrereq() ←

addStudent(s) ↓

Second design for checking the prerequisites of students

|The God Class Problem - Behavioral Form

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

99

s:Student:Course :CourseOffering
2: check(p) →1: p = getPrereq() ←

addStudent(s) ↓

3: check(p,c) ←

s:Student:Course :CourseOffering
2: c = getCourses() →1: p = getPrereq() ←

addStudent(s) ↓

s:Student:Course :CourseOffering
1: c = getCourses() →2: checkPrereq(c) ←

addStudent(s) ↓

Third design for checking the prerequisites of students

The policy is implemented
by course offering.

|The God Class Problem - Behavioral Form

Implementing Policies Between Two or More Classes.
Example from the Course-scheduling Domain

100

s:Student:Course :CourseOffering
2: check(p) →1: p = getPrereq() ←

addStudent(s) ↓

3: check(p,c) ←

s:Student:Course :CourseOffering
2: c = getCourses() →1: p = getPrereq() ←

addStudent(s) ↓

s:Student:Course :CourseOffering
1: c = getCourses() →2: checkPrereq(c) ←

addStudent(s) ↓

What do you think of these three designs?
(Discuss the pros and cons - regarding the
implementation of the policy - with your fellow
students.)

|The God Class Problem - Behavioral Form
The God Class Problem - Behavioral Form Summary

101

• In general, always try to model the real world
(Low representational gap facilitates maintenance and evolution.)
But modeling the real world is not as important as the other heuristics.
(E.g., in the real world a room does not exhibit any behavior, but for a
heating system it is imaginable to assign the responsibility for heating up
or cooling down a room to a corresponding class.)

• Basically, a god class is a class that does too much
(Behavioral Form)

• By systematically applying the principles that we have
studied previously, the creation of god classes
becomes less likely

|The Proliferation of Classes 102
Classes That Model the Roles an Object Plays

Be sure that the abstractions that you model are classes and not
simply the roles objects play.

|The Proliferation of Classes
Classes That Model the Roles an Object Plays

• Whether to choose Variant A or B depends on the domain you are
modeling; i.e. whether Mother and Father exhibit different
behavior

• Before creating new classes, be sure the behavior is truly different
and that you do not have a situation where each role is using a
subset of Person functionality

103

Variant A Variant B
class Person {…}
class Father extends Person {…}
class Mother extends Person {…}

class Person {…}

main () {
 Father f = new Father(…);
 Mother m = new Mother(…);
}

main () {
 Person father
 = new Person(…);
 Person mother
 = new Person(…);
}

|The Proliferation of Classes
Classes That Model the Roles an Object Plays

What do you think of the following design?

104

MaleCustomer

Customer
{abstract}

FemaleCustomer

Which question do you have to ask yourself to decide if such a design makes
sense?

Summary

|Goal of the Lecture 106

The goal of this lecture is to enable you to
systematically carry out small(er) software

projects that produce quality software.

• Always assign responsibilities to classes such that the coupling is as low as possible ↓,
the cohesion is as high as possible ↑ and the representational gap is as minimal as
possible ↓.

• Coupling and cohesion are evaluative principles to help you judge OO designs.
• Design heuristics are not hard rules, but help you to identify weaknesses in your code

to become aware of potential (future) issues.

|Goal of the Lecture 107

The goal of this lecture is to enable you to systematically carry out small(er)
commercial or open-source projects.

Project
Start

Project
End

Requirements Management
Domain Modeling

Software Project Management

Testing
Modeling

Start of an Iteration

Coding

