
Dr. Michael Eichberg
Software Technology Group
Department of Computer Science
Technische Universität Darmstadt

Introduction to Software Engineering

Introduction to
Design Patterns



|Design Patterns 2

Design Patterns =dt. Entwurfsmuster

Main Focus

(Content relevant 

for the exam!)

Alternative 
Book



|Patterns 3

A pattern describes... 
▶ a problem which occurs over and over again in our 

environment, 
▶ the core of the solution to that problem, in such a way that you 

can use this solution a million times over, without ever doing it 
the same way twice. 
(Christopher Alexander)

PATTERNS



|Design Patterns 4
Design Patterns - Motivation

• Designing reusable software is hard

• Novices are overwhelmed

• Experts draw from experience

• Some design solutions reoccur

• Understanding reoccurring solutions has several 
facets: 
• Know when to apply

• Know how to establish it in a generic way

• Know the consequence (trade-offs)



|Design Patterns
On Patterns...

• Patterns are proven
• Proven software practice

• Piece of literature

• Building block, with various abstraction levels: 
• Idiom (Coplien, 1991) 
• Design Pattern (Gamma et al., 1995) 
• Architectural Pattern (Buschmann et al., 1996) 

5

“Aggressive 
disregard for 
originality.”



Idioms
… are not Design Patterns



|Idioms

An idiom is a low-level pattern specific to a 
programming language.

•String copy in C

7

E
xam

ple

while (*d++=*s++); 



|Idioms

An idiom is a low-level pattern specific to a 
programming language.

• Lazy instantiation of Singletons in Java 
(Double-checked Locking Idiom)
 

8

E
xam

ple

private static Device device = null;
public static Device instance() {
	 if (device == null) {
	 	 synchronized (Device.class) {
	 	 	 if (device == null) {
	 	 	 	 device = new Device();
	 }	 } 	}
	 return device;
}

Requires Java 6 

or newer to 

work correctly!



Template Method
A first Design Pattern



|Design Patterns 10
The Template Method Pattern

Design Goal 
We want to implement an algorithm such that certain 
(specific) parts can be adapted / changed later on.



|Design Patterns 11
The Template Method Pattern

write(int)
 

FileOutputStream

write(byte[] b)
write(byte[] b, int off, int len)
write(int)

 

OutputStream
{abstract}

«method»
{

for (byte i : b) {
write(i);

} 
}

• Define a skeleton of 
an algorithm in an 
operation, but defer 
some steps to 
subclasses

• Often found in 
frameworks and APIs



|Design Patterns 12
The Template Method Pattern

opA()
opB()

 
ConcreteClass

templateMethod()
opA()
opB()

 

AbstractClass
{abstract}

«method»
{

... 
opA();
...
opB();

}

• Use the Template Method 
Pattern to ….
• separate variant and 

invariant parts

• avoid code duplication in 
subclasses; the common 
behavior is factored and 
localized in a common 
class

• control subclass 
extensions 

The template method 
is the method that 

defines the algorithm 
using abstract (and 

concrete) operations.

Besides, abstract 
operations (must be 

overridden) it is possible to define hook operations (may be 
overridden).



Architectural Patterns!
… are not Design Patterns



|Architectural Patterns

Architectural patterns help to specify the fundamental 
structure of a software system, or important parts of 
it.

•Architectural patterns have an important impact on the 
appearance of concrete software architectures
•Define a system’s global properties, such as …
• how distributed components cooperate and exchange data
• boundaries for subsystems

• The selection of an architectural pattern is a fundamental 
design decision; it governs every development activity that 
follows

14



|Architectural Patterns

Architectural patterns help to specify the fundamental 
structure of a software system, or important parts of 
it.

• Pipes and Filters
•Broker Pattern
•MVC
•Broker
•…

15

Architectural Patterns
Often, it is not sufficient to 

choose just one 
architectural pattern; 

instead it is necessary to 
combine several 

architectural patterns.

More on this topic: 
Enterprise Application 

Design



|Architectural Patterns

Example
Model-View Controller (MVC)

16

The MVC pattern describes a fundamental structural organization 
for interactive software systems
▶ The model contains the core functionality and data

The model is independent of output representations or input 
behavior.

▶ The user interface is comprised of:

▶ Views that display information to the user
The view obtains the data from the model.

▶ Controllers that handle user input
Each view has a controller. A controller receives input. The 
events are then translated to service requests for the model 
or the view. All interaction goes through a controller.



|Architectural Patterns

Example
Model-View Controller (MVC)

Change Propagation
17

A change propagation mechanism ensures consistency between 
the user interface and the model.
(The change-propagation mechanism is usually implemented using 
the Observer pattern / the Publisher-Subscriber pattern.)
Basic Idea: 

A view registers itself with the model. 
If the behavior of a controller depends on the state of the model, 
the controller registers itself with the change propagation 
mechanism.

Model

1: change propagation change 

View



|Architectural Patterns

Example
Model-View Controller (MVC)

Applicability
18

Use the MVC pattern for building interactive applications with a 
flexible human-computer interface. When...
▶ the same information should be presented differently (in 

different windows...)
▶ the display and behavior of the application must reflect data 

manipulations immediately
▶ porting the UI (or changing the L&F) should not affect code in 

the core of the application
Data

View 1 View 2



|Architectural Patterns

Example
Model-View Controller (MVC)

Structure
19

Model

Controller

View

While the Controller and the View are directly coupled with the 
Model, the Model is not directly coupled with the Controller or the 
View.



|Architectural Patterns

Example
Model-View Controller (MVC)

Liabilities 
20

▶! Increased complexity
Using separate view and controller components can increase 
complexity without gaining much flexibility

▶! Potential for excessive number of updates
Not all views are always interested in all changes.

▶ Intimate connection between view and controller

(Liabilities =dt. Verantwortlichkeiten / Verbindlichkeiten)



|Architectural Patterns

Architectural Patterns
Recommended Resources

21

▶ Pattern-Oriented Software Architecture - A System of 
Patterns; Frank Buschmann, Regine Meunier, Hans 
Rohnert, Peter Sommerlad, Michael Stal; Wiley 1996

▶ Design Patterns; Gamma et al.

▶ Patterns of Enterprise Application Architecture; Martin 
Fowler; Addison Wesley 2003



Properties of 
(Design) Patterns



|Design Patterns 23
Design Patterns - Benefits

Systematic (software-)development: 
• Documenting expert knowledge

• Use of generic solutions

• Raising the abstraction level



|Design Patterns 24
Design Patterns - Essentials

• a pattern has a name

• the problem has to 
reoccur to make the 
solution relevant in 
situations outside the 
immediate one

• it has to be possible to 
tailor the solution to a 
variant of the problem

A Design Pattern 
describes a solution for 
a problem in a context.

to tailor =dt. anpassen



|Design Patterns
Essential Parts of Patterns

25

1.! Pattern Name
A short mnemonic to increase your design vocabulary.

2.! Problem
Description when to apply the pattern (conditions that have to be met before it 
makes sense to apply the pattern).

3.! Solution
The elements that make up the design, their relationships, responsibilities and 
collaborations.

4.! Consequences
Costs and benefits of applying the pattern. Language and implementation issues 
as well as impact on system flexibility, extensibility, or portability.
The goal is to help understand and evaluate a pattern.



|Design Patterns

Template for Design Patterns
(For Design Patterns as described by Gamma et al., 1995)

26

1. ▶!Name
▶!Intent 

2. ▶!Motivation 
▶!Applicability 

3.

▶!Structure 
▶!Participants 
▶!Collaboration
▶!Implementation 

4. ▶!Consequences 

5. ▶!Known Uses
▶!Related Patterns



|Design Patterns

To document a used design pattern use the participant names of 
the pattern to specify a class’ role in the implementation of 
patterns. 

27

write(int)
 

FileOutputStream

write(byte[] b)
write(byte[] b, int off, int len)
write(int)

 

OutputStream
{abstract}

Template 
Method

abstract
class

concrete
class

opA()
opB()

 
ConcreteClass

templateMethod()
opA()
opB()

 

AbstractClass
{abstract}

«method»
{

... 
opA();
...
opB();

}

Template Method Pattern Use of the Template Method 
Pattern in Java



|Design Patterns
Levels of Consciousness for a Design Pattern

1.Innocence
2.Known tricks
3.Competent trick application
4.Applicability & consequences known
5.Wide knowledge of patterns & their interaction
6.Capable of capturing knowledge into literate form

28



|Design Patterns
Design Patterns Serve Multiple Purposes

29

Elements of Reusable 
Software patterns foster reusability

Reuse of Design rather than code

Communication design vocabulary

Documentation information chunks

Teaching passing on culture

Language Design high level languages



|Design Patterns

Patterns enable the construction of high-quality software 
architectures.

30



|Design Patterns 31

A software design pattern describes...
▶ a commonly recurring structure of interacting software 

components
▶!that solve a general software design problem 

within a particular context.



|Design Patterns 32
Design Patterns - Occurrences

chess from rules to expertise 

literature oldest reference 

agriculture wisdom vs. science 

architecture pioneering work 

software designsoftware design

Place at 

Window

Light from two sides

Deep terrace

Patterns in Architecture



Summary



|Goal of the Lecture 34

The goal of this lecture is to enable you to 
systematically carry out small(er) software 

projects that produce quality software. 

• Idioms, Design Patterns and Architectural Patterns help you to solve recurring 
problems (at different abstraction levels) and to immediately understand the benefits 
and tradeoffs.

• Patterns enable you to talk about the design of your application at a higher abstraction 
level.


