
Dr. Michael Eichberg
Software Technology Group
Department of Computer Science
Technische Universität Darmstadt

Introduction to Software Engineering

The Composite
Design Pattern
For details see Gamma et al. in “Design Patterns”

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Motivation

• Imagine a drawing editor where complex diagrams are
build out of simple components and where the user wants
to treat classes uniformly most of the time whether they
represent primitives or components

• Example
• Picture contains elements
• Elements can be grouped
• Groups can contain other groups

2

Suitcase

9,99€

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Intent

•Compose objects into tree structures to represent part-
whole hierarchies
• The composite design pattern lets clients treat individual

objects and compositions of objects uniformly

3

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Example

4

Object-Diagram
:Group

:Group tag:Rectangle price:Text

handle:Line case:Rectangle name:Text

Suitcase
9,99€

Drawing

Corresponding Object Diagram

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Example

5

Object-Diagram
:Group

:Group tag:Rectangle price:Text

handle:Line case:Rectangle name:Text

Suitcase
9,99€

draw()

Element

draw()

Line

draw()

Text

draw()
add(Element)
remove(Element)
getChild(int)

Group

draw()

Rectangle

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Applicability

Use composite when...
▶ you want to represent part-whole hierarchies of

objects
▶ you want clients to be able to ignore the

difference between individual and composed
objects
(Clients will treat all objects in the composite
structure uniformly.)

6

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Structure

7

operation()

add(Component)
remove(Component)
getChild(int)

Component
{abstract}

operation()

Leaf

operation()

add(Component)
remove(Component)
getChild(int)

Composite

Client

«method»
{

forall g in children
g.operation()

}

children

operation()

add(Component)
remove(Component)
getChild(int)

Component
{abstract}

operation()

Leaf

operation()

add(Component)
remove(Component)
getChild(int)

Composite

Client

«method»
{

forall g in children
g.operation()

}

children

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Participants

▶ Component
▶ Declares the interface for objects in the composition
▶ Implements the default behavior as appropriate
▶ (Often) declares an interface for accessing and

managing child components
▶ Leaf

Represents leaf objects in the composition; defines the
primitive behavior

▶ Composite
Stores children / composite behavior

▶ Client
Accesses objects in the composition via Component
interface

8

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Collaborations

▶ Clients interact with objects through the Component
interface

▶ Leaf recipients react directly
▶ Composites forward requests to their children, possibly

adding before/after operations

9

Excursion: A pattern is a collaboration

Object diagram for the context.
Which roles are involved?

Sequence diagram for interactions
(Interaction diagram for context & interaction.)

What is the order of method calls?

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Consequences

▶"Primitive objects can be recursively composed ✓
▶"Clients can treat composites and primitives uniformly ✓

(Clients do not have to write tag-and-case statement-
style functions.)

▶"New components can easily be added ✓

▶"Design may become overly general ✗
(You can’t always rely on the type system to enforce
certain constraints; e.g. that a composite has only
certain components.)

10

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Implementation

▶ Explicit parent references
May facilitate traversal and management of a composite
structure; often defined in the component class. Need to
be maintained.

▶"Sharing components
E.g. to reduce storage requirements it is often useful to
share components. (→Flyweight Pattern)

▶ Size of the component interface
To make clients unaware of the specific Leaf or
Composite classes the Component class should define as
many operations for Composite and Leaf as possible.
(May require a little “creativity”.)

▶ …(next page)

11

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Structure

12

operation()

add(Component)
remove(Component)
getChild(int)

Component
{abstract}

operation()

Leaf

operation()

add(Component)
remove(Component)
getChild(int)

Composite

Client

«method»
{

forall g in children
g.operation()

}

children

Issue -
General Design Principle:
“A class should only define
methods meaningful to its

subclasses.”
Sometimes some “creativity” is

needed!

|The GoF Design Patterns - Composite Pattern
The Composite Design Pattern - Implementation

▶ Placing child management operations - who declares
them?
▶ at the root (Component) is convenient, but less safe

because clients may try to do meaningless things
▶ in Composite is safe

13

operation()

Component
{abstract}

operation()
add(Component)
remove(Component)
getChild(int)

Composite

children

operation()
add(Component)
remove(Component)
getChild(int)

Component
{abstract}

operation()
add(Component)
remove(Component)
getChild(int)

Composite

children

declaration Trade-off
between

safety and
transparency.

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Example - Component Class

Computer equipment contains:
▶ drives,
▶ graphic cards in the PCIe slots,
▶ memory,
▶ and more.

Such a part-whole structure can be modeled naturally with
the Composite pattern.

14

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Example - Component Class

15

public abstract class Equipment {
	 private String name; 	
	 public String name() { return name; }
	
	 public abstract int price();
	 // more methods, e.g., for power consumption etc.
	
	 // Child management
	 public abstract void add(Equipment eq);
	 public abstract void remove(Equipment eq);
	 public Iterator<Equipment> iterator(){
	 	 return NULL_ITERATOR;
	 };
}

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Example - Leaf Class

16

public class HardDisk extends Equipment {

	 public int price() {
	 	 return 50;
	 }

	 ...
}

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Example - Composite Class

17

public class CompositeEquipment extends Equipment {

 ...

	 public int price() {
	 	 int total = 0;
	 	 for (int i=0; i < equipment.length; i++)
	 	 	 total += equipment[i].price();
	 	 return total;
	 }

	 public void add(Equipment eq) {...};
	 public void remove(Equipment eq) {...};

	 public Iterator<Equipment> iterator() {...};
}

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Example - Demo Usage

18

public class Chassis extends CompositeEquipment{…}
public class Bus extends CompositeEquipment{…}
public class Card extends Equipment{…}
public class Mainboard extends CompositeEquipment{…}

Chassis chassis = new Chassis();
Mainboard mainboard = new Mainboard(“Hypermulticore”);
Bus bus = new Bus("PCIe Bus");

chassis.add(new HardDisk("Personal 1Tb Drive"));
chasses.add(mainboard);
mainboard.add(bus);
bus.add(new Card("Graphics Card"));
bus.add(new HardDisk("YetAnotherDisk")); // checks required...?
System.out.println("Total price: " + chassis.price());

}Further
Definitions

DEMOCODE

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Known Uses

▶ View class of Model/View/Controller
▶ Application frameworks & toolkits
▶ ET++, 1988
▶ Graphics, 1988
▶ Glyphs, 1990
▶ InterViews, 1992
▶ Java (AWT, Swing, Files)

19

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Related Patterns

▶ Iterator
Traverse composite

▶ Visitor
To localize operations that are otherwise distributed
across Composite and Leaf classes

▶ Chain of Responsibility
Use components hierarchy for task solving

▶ Flyweight
For sharing components

20

|The GoF Design Patterns - Composite Pattern

The Composite Design Pattern
Summary

21

The Composite Design Pattern
facilitates to compose objects into
tree structures to represent part-

whole hierarchies.

Apply the composite pattern if clients can
treat individual objects and compositions of

objects uniformly.

