
Dr. Michael Eichberg
Software Engineering
Department of Computer Science
Technische Universität Darmstadt

Introduction to Software Engineering

Software Testing & Unit Tests
• Resources

• Ian Sommerville 
Software Engineering 8th Edition  
Addison Wesley 2007

• Robert v. Binder 
Testing Object-Oriented Systems - Models, Patterns, and
Tools 
Addison Wesley 2000

• Peter Liggesmeyer 
Software-Qualität 
Spektrum 2002

Software Testing

|

“
Verification & Validation

Software Engineering 8th Edition; Addison Wesley 2007
Ian Sommerville

3

Validation
“Are we building the right product?”

Verification
“Are we building the product right?”

|Verification & Validation 4

Two complementary approaches for verification and
validation (V&V) can be distinguished.

•Software Inspections or
Peer Reviews 
(Static Technique) 
“Software inspections” can be
done at all stages of the
process.  
•Software Testing 

(Dynamic Technique)

Software
Inspections

Requirements
Specification Prototyp

High-level
Design

Formal
Specification

Detailed
Design

Program Program
Testing

|Software Inspections - Static Technique

Software inspections check the correspondence
between a program and its specification.

•Some techniques
• Program inspections  

The goal is to find program defects, standards violations,
poor code rather than to consider broader design issues; it is
usually carried out by a team and the members
systematically analyze the code.  
An inspection is usually driven by checklists. 
(Studies have shown that an inspection of roughly 100LoC
takes about one person-day of effort.)

• ...

5

|Software Inspections - Static Technique

Software inspections check the correspondence
between a program and its specification.

•Some techniques
• ...
• Automated source code analysis 

Includes - among others - control flow analysis, data use /
flow analysis, information flow analysis and path analysis.
Static analyses draw attention to anomalies.

• ...

6

|Software Inspections - Lightweight Static Software Analysis 7

|Software Inspections - Lightweight Static Software Analysis 8

|Software Inspections - Lightweight Static Software Analysis 9

|Software Inspections - Lightweight Static Software Analysis 10

|Software Inspections - Lightweight Static Software Analysis 11

|Software Inspections - Lightweight Static Software Analysis 12

|Software Inspections - Static Technique

Software inspections check the correspondence
between a program and its specification.

•Some techniques
•…
• Formal verification  

Formal verification can guarantee the absence of specific bugs. E.g., to guarantee that
a program does not contain dead locks, race conditions or buffer overflows.

13

|Software Inspections - Static Technique

Software inspections check the correspondence
between a program and its specification.

Software inspections do not demonstrate that
the software is useful.

14

|Software Testing - Dynamic Testing

Software testing refers to running an implementation
of the software with test data to discover program
defects.

•Validation testing 
Intended to show that the software is what the customer
wants 
(Basically, there should be a test case for every requirement.)

•Defect testing 
Intended to reveal defects
• (Defect) Testing is...
• fault directed when the intent is to reveal faults
• conformance directed when the intent is to demonstrate

conformance to required capabilities

15

No Strict Separation

|Software Testing

Test plans set out the testing schedule and procedures;
they establish standards for the testing process.
They evolve during the development process.

•V&V is expensive; sometimes half of the development
budget is spent on V&V

16

Requirements
specification

Acceptance
test plan

System
specification

System
integration
test plan

System
design

Sub-system
integration
test plan

Detailed
design

Module and
unit code and

test

Sub-system
integration

test

System
integration

test

Acceptance
test

|Software Testing - Scope of Tests

The scope of a test is the collection of software
components to be verified.

•Unit tests  
(dt. Modultest)  
Comprises a relatively small executable; e.g., a single
object
• Integration test  

Complete (sub)system. Interfaces among units are
exercised to show that the units are collectively operable
•System test  

A complete integrated application. Categorized by the kind
of conformance they seek to establish: functional,
performance, stress or load

17

|

“
Software Testing

E. Dijkstra

18

Testing can only show the presence of errors, not
their absence.

STOP

|Software Testing - Test Design
The design of tests is a multi-step process.

1.Identify, model and analyze the responsibilities of
the system under test (SUT)  
(E.g., use pre- and postconditions identified in use cases as input.)

2. Design test cases based on this external perspective
3. Add test cases based on code analysis, suspicions, and

heuristics
4. Develop expected results for each test case or choose an

approach to evaluate the pass / no pass status of each
test case

19

|Software Testing - Test Automation System

After the test design a test automation system (TAS)
needs to be developed.

A test automation system will...
• start the implementation under test (IUT)
• set up its environment
•bring it to the required pretest state
• apply the test inputs
• evaluate the resulting output and state

20

|Software Testing - Goal of Test Execution

The goal of the test execution is to establish that the
implementation under test (IUT) is minimally operational
by exercising the interfaces between its parts.

To establish the goal...
1. execute the test suite; the result of each test is evaluated

as pass or no pass
2. use a coverage tool to instrument the implementation

under test; rerun the test suite and evaluate the reported
coverage

3. if necessary, develop additional tests to exercise
uncovered code

4. stop testing when the test goal is met; all tests pass 
(“Exhaustive” testing is generally not possible!)

21

|Test Point

•A test point is a specific value for...
• test case input
• a state variable

• The test point is selected from a domain; the domain is the
set of values that input or state variables may take

•Heuristics for test point selection:
• Equivalence Classes
• Boundary Value Analysis
• Special Values Testing

22

Test Point
(dt. Testdatum (Prüfpunkt))

|Software Testing - Terminology

Test Case
(dt. Testfall)

• Test cases specify:
• pretest state of the implementation under test (IUT)
• test inputs / conditions
• expected results

23

|Software Testing - Terminology
Test Suite

•A test suite is a collection of test cases

24

|Software Testing - Terminology

Test Run
(dt. Testlauf)

•A test run is the execution (with results) of a test suite
• The IUT produces actual results when a test case is applied

to it; a test whose actual results are the same as the
expected results is said to pass

25

|Software Testing - Terminology

Test Driver
&
Test Harness/Automated Test Framework

• Test driver is a class or utility program that applies test
cases to an IUT
• Test harness is a system of test drivers and other tools to

support test execution

26

|Software Testing - Terminology 27

•A failure is the (manifested) inability of a system or
component to perform a required function within specified
limits
• A software fault is missing or incorrect code
• An error is a human action that produces a software fault
• Bug: error or fault.

Failures, Errors & Bugs
Failure =dt. Defekt(, Fehlschlag)
Fault =dt. Mangel
Error =dt. Fehler

|Software Testing - Terminology 28

•A document prepared for human use that explains a
testing approach:
• the work plan,
• general procedures,
• explanation of the test design,
• ...

Test Plan

|Software Testing - Terminology 29

Testing must be based on a fault model.

Because the number of tests is infinite, we have to make
(for practical purposes) an assumption about where faults
are likely to be found!

|Software Testing - Terminology 30

Testing must be based on a fault model.

Two general fault models and corresponding testing
strategies exist:
- Conformance-directed testing
- Fault-directed testing

Testing has to be efficient.

|Software Testing - Test Plan
Developing a Test Plan

31

Let’s assume that we are going to write a tool for verifying
Java code. In particular, we would like to assert that specific
int based calculations always satisfies the stated assertions.

 public int doCalc(int i, int j) {
 System.out.println(i*j);
 if (i < 0 || i > 10 || j < 0 || j > 100)
 throw new IllegalArgumentException();

 return i * j; // assert(i * j in [0,1000])
 }

|Software Testing - Test Plan
Developing a Test Plan

32

/** Representation of a primitive Java int value. */
abstract class IntValue {

 /**
 * Calculates the result of multiplying a and b. The result is as precise as possible given
 * the available information. If the result is either a or b, the respective object is
 * returned.
 */
 public abstract IntValue mul(IntValue other);
}

/** Represents a specific but unknown Java int value. */
class AnInt extends IntValue {

 public IntValue mul(IntValue other) {…}
}

/** Represents a value that is in the range [lb,ub]; however, the specific value is unknown. */
class Range extends IntValue {

 public final int lb;
 public final int ub;

 public Range(int lb, int ub) {
 this.lb = lb;
 this.ub = ub;
 }

 public IntValue mul(IntValue other) {…}
}

To represent Java int values, we are using the following classes
and map the calculations to the respective methods.

How
 do

es
 th

e t
es

t p
lan

 lo
ok

 lik
e?

|Software Testing - Test Plan
Developing a Test Plan

33

• Devise a test plan for a program that:

• reads three integer values,

• which are interpreted as the length of the sides of a triangle

• The program states whether the triangle is

• scalene (dt. schief),

• isosceles (dt. gleichschenklig), or

• equilateral (dt. gleichseitig)  

• A valid triangle must meet two conditions:

• No side may have a length of zero

• Each side must be shorter than the sum of all sides divided
by 2

|Software Testing - Devising a Test Plan
An Implementation of a Triangle

34

class Polygon extends Figure {
abstract void draw(…);
abstract float area();

}
class Triangle extends Polygon {

public Triangle(...);
public void setA(LineSegment a);
public void setB(LineSegment b);
public void setC(LineSegment c);
public boolean isIsosceles();
public boolean isScalene();
public boolean isEquilateral();

}

Figure

LineSegment Polygon

Triangle Pentagon Hexagon

|Software Testing - Devising a Test Plan
Test Descriptions

35

Description A B C Expected Output

Valid scalene triangle 5 3 4 Scalene

Valid isosceles triangle 3 3 4 Isosceles

Valid equilateral triangle 3 3 3 Equilateral

First perm. of two equal sides 50 50 25 Isosceles

(Permutations of previous test case) Isosceles

One side zero 1000 1000 0 Invalid

First perm. of two equal sides 10 5 5 Invalid

Sec. perm. of two equal sides 5 10 5 Invalid

Third perm. of two equal sides 5 5 10 Invalid

Three sides greater than zero, sum of two smallest less than
the largest 8 5 2 Invalid

|Software Testing - Devising a Test Plan
Test Descriptions

36

Description A B C Expected Output

(Permutations of previous test case) Invalid

All sides zero 0 0 0 Invalid

One side equals the sum of the other 12 5 7 Invalid

(Permutations of previous test case) Invalid

Three sides at maximum possible value MAX MAX MAX Equilateral

Two sides at maximum possible value MAX MAX 1 Isosceles

One side at maximum value 1 1 MAX Invalid

+ Further OO related tests w.r.t. the type hierarchy etc.  
(e.g. are the line segments connected.)

|Software Testing - Code Coverage

• The completeness of a test suite w.r.t. a particular test
case design method is measured by coverage
•Coverage is the percentage of elements required by a test

strategy

37

Coverage
Coverage =dt. Abdeckung

|Software Testing - Code Coverage
The Control-flow Graph of a Method

38

static void doThat(int v, boolean b) {

if (v > 100 && b) {
print("if");

}

else {
print("else");

}

return;

}

if (v > 100 && b)

print("if") print("else")

“true” “false”

return

Node

Branch
(dt. Zweig)

A Node consists of a sequence of
statements without any branches
in or out (except of the last
statement).

A branch describes a possible
control-flow.

|Software Testing - Code Coverage
Common Method Scope Code Coverage Models

39

• Statement Coverage is achieved when all statements in a
method have been executed at least once

• Branch Coverage is achieved when every path from a
node is executed at least once by a test suite; compound
predicates are treated as a single statement

• Simple Condition Coverage requires that each simple
condition be evaluated as true and false at least once  
(Hence, it does not require testing all possible branches.)

• Condition Coverage =  
Simple Condition Coverage + Branch Coverage

• Multiple-condition Coverage requires that all true-false
combinations of simple conditions be exercised at least
once

branch =dt. Verzweigung; condition =dt. Bedingung;
branch coverage =dt. Zweigüberdeckung
simple condition coverage =dt. einfache Bedingungsüberdeckung

|Software Testing - Code Coverage
Conditions - Exemplified

40

static void doThat(int v, boolean b) {

if (v > 100 && b) {
print("if");

}
else {

print("else");
}

}

simple/atomic condition(s){
{

Here, “v > 100” is
the first condition
and “b” is the
second condition.

In Java, simple/
atomic conditions
are separated by
“&&” / ”&” or
“||”/”|” operators.

|Software Testing - Code Coverage
Compound Predicates - Exemplified

41

static void doThat(int v, boolean b) {

if (v > 100 && b) {
print("if");

}
else {

print("else");
}

}

(compound) predicate (expression){
Here, “v > 100 && b” is
called a predicate resp. a
compound predicate. This
compound predicate
consists of two “simple”
conditions.

|Software Testing - Code Coverage
Branch Coverage Exemplified

42

static void doThat(int v, boolean b) {

if (v > 100 && b) {
print("if");

}
else {

print("else");
}

}

if (v > 100 && b)

print("if") print("else")

“true” “false”

return

100% Branch Coverage
v = 90, b = true
v = 101, b = true

Node

Branch

|Software Testing - Code Coverage
Simple Condition Coverage Exemplified

43

static void doThat(
boolean a,
boolean b,
boolean c) {

if ((a & c) | (c & b) | (b & a)) {
print("if");

}
else {

print("else");
}

}

if ((a & c) | (c & b) | (b & a))

print("if") print("else")

“true” “false”

return

100% Simple Condition Coverage
a = true, b = false, c = false
a = false, b = true, c = false
a = false, b = false, c = true

taken
path

untested

Recall: The condition is an expression that evaluates to true or
false. I.e., an expression such as !b (not b) is the condition.

|Software Testing - Code Coverage
(Simple) Condition Coverage Exemplified

44

static void doThat(
boolean a,
boolean b,
boolean c) {

if ((a && c) || (c && b) || (b && a)) {
print("if");

}
else {

print("else");
}

}

if ((a && c) || (c && b) || (b && a))

print("if") print("else")

“true” “false”

return

100% (Simple) Condition Coverage
a = true, c = true (b is not relevant)
a = false, c = true, b = true
a = false, c = false, b = false

Recall, if we have shortcut evaluation,
simple condition coverage implies
branch coverage!

|Software Testing - Code Coverage
Basic Block Coverage

•A basic block is a sequence of consecutive instructions in
which flow of control enters at the beginning and leaves at
the end without halt or possibility of branching except at
the end
•Basic block coverage is achieved if all basic blocks of a

method are executed 
(⚡Sometimes “statement coverage” is used as a synonym for “basic block coverage”
- however, we do not use these terms synonymously.)  
(Basic blocks are sometimes called segments.)  

45

|Software Testing - Code Coverage

This graph is the
control-flow graph
that compilers
typically generate
when compiling
the source code
shown on the left
hand side.

Basic Block Coverage Exemplified
46

static void doThat(int v, boolean b) {

if (v > 100 && b) {
print("if");

}
else {

print("else");
}

}

static void doThat(int v,boolean b)

0 if(100 ›= v)

1 print(''else'')

t 4 if(b)

f

2 return

f

5 print(''if'')

t

3 Exit

Basic
Blocks
At The
 Bytecode
 Level

100% Basic Block Coverage
v = 90, b = “not relevant”
v = 101, b = true

|Software Testing - Code Coverage
Control-flow Graph

47

static void doThis(boolean a, boolean b) {

if (a) {
print("A");

}
if (b) {

print("B");
}

}

static void doThis(boolean a,boolean b)

0 if(a)

1 if(b)

f 5 print(''A'')

t

2 return

f 4 print(''B'')

t

3 Exit

Basic
Block

a b

Statement Coverage TRUE TRUE

Basic Block Coverage TRUE TRUE

(Simple)  
Condition Coverage

TRUE TRUE

FALSE FALSE

Branch Coverage
FALSE FALSE

TRUE TRUE

M
inim

al N
um

ber of
Tests to Achieve …

Coverage

No case covers all
possible paths!

Here, condition coverage can
also be achieved using other
test cases.(E.g. a=false; b=true
and a=true; b=false.)

|Software Testing - Code Coverage
Control-flow Graph

48

static void doThis(boolean a, boolean b) {

if (a && b) {
print("A && B");

}
} Basic

Blocka b

Statement Coverage TRUE TRUE

Basic Block Coverage TRUE TRUE

(Simple)  
Condition Coverage

TRUE TRUE

TRUE FALSE

FALSE /

Branch Coverage
(w.r.t. the given source

code)

TRUE TRUE

FALSE /

Multiple Condition
Coverage  

TRUE TRUE

TRUE FALSE

FALSE / static void doThis(boolean a,boolean b)

0 if(a)

1 return

f

3 if(b)

t

2 Exit

f 4 print(''A && B'')

t

M
inim

al N
um

ber of Tests
 to Achieve …

 Coverage

Frage

Würde im Falle von Condition Coverage nicht
auch "true, true" und "false, false" ausreichen?

Antwort

Da im Ausdruck "a && b", “b” nur evaluiert wird
wenn a wahr ist (Short-cut Evaluation von "&&"
- siehe Graph) - ist "false / false" keine
hilfreiche Belegung der Parameter.

Frage / Antwort:

Wäre der Code:

if (a) {

 if (b)

 print(“A && B”)

 else

 print(“Hello!”)

}

return;

dann wäre für “Statement
Coverage”folgende Testfälle
notwendig: a=true; b=false und
a=true; b=true. (Ebenso für
Basic Block Coverage)

|Software Testing - Code Coverage
Control-flow Graph

49

static void doThis(boolean a, boolean b) {

if (a || b) {
print("A or B");

}
} Basic

Block
a b

Statement Coverage TRUE /

Basic Block Coverage FALSE TRUE

(Simple)
Condition Coverage

FALSE TRUE

FALSE FALSE

TRUE /

Branch Coverage
(w.r.t. the source

code)

TRUE /

FALSE FALSE

M
inim

al N
um

ber of
Tests to Achieve …

Coverage

static void doThis(boolean a,boolean b)

0 if(a)

1 print(''A or B'')

t 4 if(b)

f

2 return

t

f

3 Exit

We have achieved
100% statement

coverage, though we
have never evaluated

the condition b.

|static long process(java.lang.String[] args) 50

static long process(String[] args) throws IllegalArgumentException {

Stack values = new Stack();
for (int i = 0; i < args.length; i++) {

String arg = args[i];
try {

long value = Long.parseLong(arg);
values.push(value);

} catch (NumberFormatException nfe) {
// there is no method to test if a string is a number ...

if (values.size() > 1) {
long r = values.pop();
long l = values.pop();
if (arg.equals("+")) {

values.push(l + r);
continue;

}
if (arg.equals("*")) {

values.push(l * r);
continue;

}
}
throw new IllegalArgumentException("Too few operands or operator unknown.");

}
}
if (values.size() == 1) return values.pop();
else throw new IllegalArgumentException("Too few (0) or too many (>1) operands.");

}

Calculating the result of
an arithmetic expression

in postfix notation:

4 5 + 5 * 3 4 * * = ?

|static long process(java.lang.String[] args)
Basic Blocks of long process(String[] args)

51

static long process(java.lang.String[] args)

0
stack = new demo.SimpleCalculator.Stack
stack.‹init›()

1
p14 = Φ(0←0,p65←11)
p17 = args.length
if(p17 › p14)

2 p20 = args[p14]

t

15 p70 = stack.size()
if(p70 != 1)

f

3 long p23 = java.lang.Long.parseLong(p20)
stack.push(p23)

11 int p65 = p14 + 1

5
java.lang.NumberFormatException

int p30 = stack.size()
if(1 ›= p30)

6
p36 = new IllegalArgumentException
p36.‹init›(''...'')
throw p36

t

8

long p40 = stack.pop()
long p43 = stack.pop()
p47 = p20.equals(''+'')
if(p47)

f

7 Exit

9 p50 = p20.equals(''*'')
if(p50)

f

12
long p58 = p43 + p40
stack.push(p58)

t

f

10
long p54 = p43 * p40
stack.push(p54)

t

16
p72 = new IllegalArgumentException
p72.‹init›('...'')
throw p72

t

17 p76 = stack.pop()
return p76

f

impossible
path

Frage

Wie kommt dieser Graph zustande?

Antwort

Dieser Graph ist das Ergebnis der Repräsentation des
kompilierten Programms. Wenn Sie Details dazu
interessieren, dann suchen sie am Besten nach "Static
Single Assignment".

Ein Einstieg wäre:

http://en.wikipedia.org/wiki/
Static_single_assignment_form

|static long process(java.lang.String[] args) 52

static long process(java.lang.String[] args)

0
stack = new demo.SimpleCalculator.Stack
stack.‹init›()

1
p14 = Φ(0←0,p65←11)
p17 = args.length
if(p17 › p14)

2 p20 = args[p14]

t

15 p70 = stack.size()
if(p70 != 1)

f

3 long p23 = java.lang.Long.parseLong(p20)
stack.push(p23)

11 int p65 = p14 + 1

5
java.lang.NumberFormatException

int p30 = stack.size()
if(1 ›= p30)

6
p36 = new IllegalArgumentException
p36.‹init›(''...'')
throw p36

t

8

long p40 = stack.pop()
long p43 = stack.pop()
p47 = p20.equals(''+'')
if(p47)

f

7 Exit

9 p50 = p20.equals(''*'')
if(p50)

f

12
long p58 = p43 + p40
stack.push(p58)

t

f

10
long p54 = p43 * p40
stack.push(p54)

t

16
p72 = new IllegalArgumentException
p72.‹init›('...'')
throw p72

t

17 p76 = stack.pop()
return p76

f

Handling Exceptions

|

“
Software Testing - Code Coverage

Testing Object-Oriented Systems  
Addison Wesley 2000

Robert V. Bender

53

Do not use a code coverage model as a test
model.
Do not rely on code coverage models to devise
test suites. Test from responsibility models and
use coverage reports to analyze test suite
adequacy.

Covering some aspect of a method […] is never a
guarantee of bug-free software.

!

|Software Testing - Code Coverage

Steve Cornett
http://www.bullseye.com/coverage.html

54

•Recommended Reading

Limits of Testing

|Software Testing - Limits 56

Limits of Testing
The number of input and output combinations for trivial programs is
already (very) large.

Assume that we limit points to integers between 1 and 10;
there are 104 possible ways to draw (a single) line.

Since a triangle has three lines we have 104 x 104 x 104
possible inputs of three lines (including invalid
combinations).

We can never test all inputs, states, or outputs.

|Software Testing - Limits

Limits of Testing
Branching and (dynamic binding) result in a very large number of
unique execution sequences. Simple iteration increases the number
of possible sequences to astronomical proportions.

57

for (
int i = 0;
i < n;
++i

)
{

if (a.get(i) == b.get(i))

 x[i] = x[i]+100;

else

x[i] = x[i] / 2;

}

loop
header

cond.

+100
stmt.

/2
stmt.

|Software Testing - Limits

Limits of Testing
Branching and dynamic binding result in a very large number of
unique execution sequences.

58

loop
header

cond.

+100
stmt.

/2
stmt.

If we count entry-exit
paths without regarding
iteration there are only
three paths:
1.loop header, exit
2.loop header, cond.,

+100
3.loop header, cond., /2

|Software Testing - Limits

Limits of Testing
Branching and dynamic binding result in a very large number of
unique execution sequences. Simple iteration increases the number
of possible sequences to astronomical proportions.

59

loop
header

cond.

+100
stmt.

/2
stmt.

Number of
iterations

Number of
paths

1 21 + 1 = 3

2 22 + 1 = 5

3 23 + 1 = 9

10 1.025

20 1.048.577

{
1. Path

|Software Testing - Limits

Limits of Testing
Branching and dynamic binding result in a very large number of
unique execution sequences. Simple iteration increases the number
of possible sequences to astronomical proportions.

60

loop
header

cond.

+100
stmt.

/2
stmt.

Number of
iterations

Number of
paths

1 21 + 1 = 3

2 22 + 1 = 5

3 23 + 1 = 9

10 1.025

20 1.048.577

{
2. Path

|Software Testing - Limits

Limits of Testing
Branching and dynamic binding result in a very large number of
unique execution sequences. Simple iteration increases the number
of possible sequences to astronomical proportions.

61

loop
header

cond.

+100
stmt.

/2
stmt.

Number of
iterations

Number of
paths

1 21 + 1 = 3

2 22 + 1 = 5

3 23 + 1 = 9

10 1.025

20 1.048.577

{
3. Path

|Software Testing - Limits

Limits of Testing
Branching and dynamic binding result in a very large number of
unique execution sequences. Simple iteration increases the number
of possible sequences to astronomical proportions.

62

loop
header

cond.

+100
stmt.

/2
stmt.

Number of
iterations

Number of
paths

1 21 + 1 = 3

2 22 + 1 = 5

3 23 + 1 = 9

10 1.025

20 1.048.577

{
4. Path

|Software Testing - Limits

Limits of Testing
Branching and dynamic binding result in a very large number of
unique execution sequences. Simple iteration increases the number
of possible sequences to astronomical proportions.

63

loop
header

cond.

+100
stmt.

/2
stmt.

Number of
iterations

Number of
paths

1 21 + 1 = 3

2 22 + 1 = 5

3 23 + 1 = 9

10 1.025

20 1.048.577

{
5. Path

|Software Testing - Limits

The ability of code to hide faults from a test suite is
called its fault sensitivity.

64

Coincidental correctness is obtained when buggy code can
produce correct results for some inputs.
E.g. assuming that the correct code would be:
	 x = x+x
but you wrote
	 x = x*x
If x = 2 is tested the code hides the bug: it produces a correct
result from buggy code. However, this bug is easily identified.

Implementing Tests
• A Very First Glimpse

|static long process(java.lang.String[] args) 66

static long process(String[] args) throws IllegalArgumentException {

Stack values = new Stack();
for (int i = 0; i < args.length; i++) {

String arg = args[i];
try {

long value = Long.parseLong(arg);
values.push(value);

} catch (NumberFormatException nfe) {
// there is no method to test if a string is a number ...

if (values.size() > 1) {
long r = values.pop();
long l = values.pop();
if (arg.equals("+")) {

values.push(l + r);
continue;

}
if (arg.equals("*")) {

values.push(l * r);
continue;

}
}
throw new IllegalArgumentException("Too few operands or operator unknown.");

}
}
if (values.size() == 1) return values.pop();
else throw new IllegalArgumentException("Too few (0) or too many (>1) operands.");

}

Calculating the result of
an arithmetic expression

in postfix notation:

4 5 + 5 * 3 4 * * = ?

|static long process(java.lang.String[] args)
A Test Plan That Achieves Basic Block Coverage

67

Description Input Expected Output

Test calculation of the correct
result {"4", "5", "+", "7", "*"} 63

Test that too few operands
leads to the corresponding

exception
{"4", "5", "+", "*"} Exception: "Too few operands

or operator unknown."

Test that an illegal operator /
operand throws the

corresponding exception
{"4", "5327h662h", "*"} Exception: "Too few operands

or operator unknown."

Test that an expression throws
the corresponding exception {} Exception: "Too few (0) or too

many (>1) operands left."

Test that too few operates
leads to the corresponding

exception
{"4", "5"} Exception: "Too few (0) or too

many (>1) operands left."

|static long process(java.lang.String[] args)
A Test Plan That Achieves Basic Block Coverage

68

Description Input Expected Output

Test calculation of the correct
result {"4", "5", "+", "7", "*"} 63

Test that too few operands
leads to the corresponding

exception
{"4", "5", "+", "*"} Exception: "Too few operands

or operator unknown."

Test that an illegal operator /
operand throws the

corresponding exception
{"4", "5327h662h", "*"} Exception: "Too few operands

or operator unknown."

Test that an expression throws
the corresponding exception {} Exception: "Too few (0) or too

many (>1) operands left."

Test that too few operates
leads to the corresponding

exception
{"4", "5"} Exception: "Too few (0) or too

many (>1) operands left."

Is this test plan “sufficient”?

|static long process(java.lang.String[] args)
Basic Blocks of long process(String[] args)

69

static long process(java.lang.String[] args)

0
stack = new demo.SimpleCalculator.Stack
stack.‹init›()

1
p14 = Φ(0←0,p65←11)
p17 = args.length
if(p17 › p14)

2 p20 = args[p14]

t

15 p70 = stack.size()
if(p70 != 1)

f

3 long p23 = java.lang.Long.parseLong(p20)
stack.push(p23)

11 int p65 = p14 + 1

5
java.lang.NumberFormatException

int p30 = stack.size()
if(1 ›= p30)

6
p36 = new IllegalArgumentException
p36.‹init›(''...'')
throw p36

t

8

long p40 = stack.pop()
long p43 = stack.pop()
p47 = p20.equals(''+'')
if(p47)

f

7 Exit

9 p50 = p20.equals(''*'')
if(p50)

f

12
long p58 = p43 + p40
stack.push(p58)

t

f

10
long p54 = p43 * p40
stack.push(p54)

t

16
p72 = new IllegalArgumentException
p72.‹init›('...'')
throw p72

t

17 p76 = stack.pop()
return p76

f

|static long process(java.lang.String[] args) 70

ECL
Emma
(Eclipse
Plug-in)

|static long process(java.lang.String[] args) 71

@Test
public void testProcess() {

String[] term = new String[] {
"4", "5", "+", "7", "*"

};
long result = SimpleCalculator.process(term);
assertEquals(Arrays.toString(term), 63, result);

}

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.fail;

import java.util.Arrays;

import org.junit.Test;

public class SimpleCalculatorTest {

}

Writing a
Test Case

using JUnit
(4)

|static long process(java.lang.String[] args) 72

public void testProcess() {

try {
SimpleCalculator.process(new String[0]);

fail();
} catch (IllegalArgumentException iae) {

assertEquals(
"Too few (0) or too many (>1) operands.",
iae.getMessage());
}

}

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.fail;

import java.util.Arrays;

import org.junit.Test;

public class SimpleCalculatorTest extends ... {

}

Writing a
Test Case

using JUnit
(3)

-
Testing

Exception
Handling

|static long process(java.lang.String[] args) 73

@Test(expected=IllegalArgumentException.class)
public void testProcess() {

SimpleCalculator.process(new String[0]);

}

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.fail;

import java.util.Arrays;

import org.junit.Test;

public class SimpleCalculatorTest {

}

Writing a
Test Case

using JUnit
(4)

-
Testing

Exception
Handling

|Alternative Frameworks for Writing Tests
TestNG

// This method will provide data to any test method  
// that declares that its Data Provider is named "provider1".  
@DataProvider(name = "provider1")  
public Object[][] createData1() { 
 return new Object[][] {  
 { "Cedric", new Integer(36) }, 
 { "Anne", new Integer(37) } 
 }; 
}  
 
// This test method declares that its data should be  
// supplied by the Data Provider named "provider1". 
@Test(dataProvider = "provider1")  
public void verifyData1(String n1, Integer n2) { 
 System.out.println(n1 + " " + n2); 

74

|Supplemental Framework for Writing Tests
Hamcrest

import static org.hamcrest.MatcherAssert.assertThat; 
import static org.hamcrest.Matchers.*; 
 
import junit.framework.TestCase; 
 
public class BiscuitTest extends TestCase { 
 public void testEquals() { 
 Biscuit theBiscuit = new Biscuit("Ginger"); 
 Biscuit myBiscuit = new Biscuit("Ginger"); 
 assertThat(theBiscuit, equalTo(myBiscuit)); 
 } 
}

75

|Alternative Frameworks for Writing Tests

ScalaTest 
(Can also be used for testing Java.)

class DefaultIntegerRangesTest  
 extends FunSpec with Matchers with ParallelTestExecution {

 describe("IntegerRange values") {

 describe("the behavior of irem") {

 it("AnIntegerValue % AnIntegerValue => AnIntegerValue + Exception") {
 val v1 = AnIntegerValue()
 val v2 = AnIntegerValue()

 val result = irem(-1, v1, v2)
 result.result shouldBe an[AnIntegerValue]
 result.exceptions match {
 case SObjectValue(ObjectType.ArithmeticException) ⇒ /*OK*/
 case v ⇒ fail(s"expected ArithmeticException; found $v")
} } } } }

76

small concise
tests 

(“atomic tests”)

very good support for
Pattern Matching

|Software Testing - Behavior-Driven Development

Behavior-Driven Development
The goal is that developers define the behavioral intent
of the system that they are developing.
http://behaviour-driven.org/

77

import org.specs.runner._
import org.specs._

object SimpleCalculatorSpec extends Specification {

"The Simple Calculator" should {
"return the value 36 for the input {“6”,“6”,“*”}" in {

SimpleCalculator.process(Array("6","6","*")) must_== 36
}

}

}

Using ScalaSpec 1.5: http://code.google.com/p/specs/

Implemented in Scala

|Software Testing - Terminology 78

•A stub is a partial, temporary implementation of a
component (e.g., a placeholder for an incomplete
component)
•Stubs are often required to simulate complex systems; to

make parts of complex systems testable in isolation

(Method-) Stub

An alternative is to use a Mock
object that mimics the original
object in its behavior and
facilitates testing.

|Debugging vs. Testing 79

Testing comprises the efforts to find defects.
Debugging is the process of locating and correcting
defects.
(Hence, debugging is not testing, and testing is not debugging.)

Summary

|Goal of the Lecture 81

The goal of this lecture is to enable you to
systematically carry out small(er) software

projects that produce quality software.

• Testing has to be done systematically; exhaustive testing is not possible.
• Test coverage models help you to assess the quality of your test suite;

however, “just” satisfying a test coverage goal is usually by no means
sufficient.

• Do take an “external” perspective when you develop your test suite.

|Goal of the Lecture 82

The goal of this lecture is to enable you to systematically carry out small(er)
commercial or open-source projects.

Project
Start

Project
End

Requirements Management
Domain Modeling

Developing/Running Tests
…
Software Project Management

Testing

|

“
The Last Word

http://www.softwaretestingfundamentals.com
Unknown Author

83

A Tester’s Courage
The Director of a software company proudly
announced that a flight software developed by the
company was installed in an airplane and the
airline was offering free first flights to the
members of the company. “Who are interested?”
the Director asked. Nobody came forward. Finally,
one person volunteered. The brave Software
Tester stated, ‘I will do it. I know that the airplane
will not be able to take off.’

