
Dr. Michael Eichberg
Software Engineering
Department of Computer Science
Technische Universität Darmstadt

Introduction to Software Engineering

Building Software

|Build Automation

The result of the build should always be the same - independent
of the developer’s local configuration.

“We want stable builds.”

Non-trivial Software is generally Build using Build
Automation Systems.

• The goal of a Build Automation System is to fully automate
all steps required to build the product given the source
artifacts of the project.

2

|Build Automation

The Build Automation Systems is responsible for
automatically carrying out all steps necessary to build
the product.

•A Build Automation typically executes the following tasks:
• Formatting the source code
• Code Generation
• Source Code Compilation
• [if necessary] Linking Code/Packaging Code
• Running the tests
• Running static analysis tools
• Deployment to the test system/production system(s)
• Creating and publishing documentation, release notes, web

pages, …

3

Historically

|Build Automation
Software is Build using Build Automation Systems.

•Given a Build Automation System, the product
can be built:
•On-Demand 

(e.g., by a developer)
•Scheduled by a build server  

(e.g., every night)
• Triggered  

(e.g., on every commit to a version control
system)

4

Historically

State of
the Art

|Build Automation

Some Examples of (Open-Source) Tools to Automate
Builds

• The family of make tools!

• Apache Ant

• Apache Maven

• gradle (Groovy Based)

• RAKE (Ruby Make)

• sbt

• …

5

State of
the Art

Historically
Automated

Dependency
Management
(To get stable

builds.)

ro
ug

h
tim

el
in

e

Internal
DSLs

Internal
DSLsInternal
DSLs

uses
XML

|An Example Build Script 6
import AssemblyKeys._

name := "BugPicker"

version := "1.1.0"

scalaVersion := "2.11.4"

scalacOptions in (Compile, doc) := Seq("-deprecation", "-feature", "-unchecked")

scalacOptions in (Compile, doc) ++= Opts.doc.title("OPAL - BugPicker")

libraryDependencies += "org.scalafx" %% "scalafx" % "1.0.0-R8"

jfxSettings

JFX.addJfxrtToClasspath := true

JFX.mainClass := Some("org.opalj.bugpicker.BugPicker")

assemblySettings

jarName in assembly := "bugpicker-" + version.value + ".jar"

test in assembly := {}

mainClass in assembly := Some("org.opalj.bugpicker.BugPicker")

resourceGenerators in Compile <+= Def.task {
 val versionFile = (baseDirectory in Compile).value / "target" / "scala-2.11" / "classes" / "org" /
"opalj" / "bugpicker" / "version.txt"
 versionFile.getParentFile.mkdirs()
 IO.write(versionFile, (version in Compile).value)
 Seq(versionFile)
}

Version
Information

Project Dependencies

Generation of other
Artifacts

Deployment information

Project Settings

Compiler Settings

Easily hundreds of lines for larger projects.

|Continuous Integration
Continuous Integration

• Continuous integration basically just means that the
developer’s working copies are synchronized with a
shared mainline several times a day.  
It was first named and proposed by Grady Booch.

• The goal is to avoid integration issues.

• CI is in particular useful in combination with
automated unit tests.

• In practice a special build server is used. 
(e.g., Hudson/Jenkins)

7

|Continuous Integration
Continuous Integration - Best Practices

• Maintain a code repository

• Automate the build

• Make the build self-testing

• Everyone commits to the baseline every day

• Every commit (to baseline) should be built  
One commit - one feature; no “Mega-commits”

• Keep the build fast

• Test in a clone of the production environment

• Make it easy to get the latest deliverables

• Everyone can see the results of the latest build

• Automate deployment

8

m
us

t h
av

es
st

an
da

rd

|Continuous Integration
Travis CI

• A hosted continuous integration service for open
source and private projects.

9

|Continuous Delivery
Continuous Delivery

• Always be able to put a product into production  
(The evolution of continuous integration.)

• Practices
• Unit/Acceptance-tests

• Code coverage and static analysis

• Deployment to integration environment

• Integration tests

• Deployments to Performance test environment

• Performance tests

• Alerts, reports and Release Notes sent out

• Deployment to release repository

10

|© http://continuousdelivery.com/2010/02/continuous-delivery/
Continuous Delivery

11

http://continuousdelivery.com/2010/02/continuous-delivery/

|© http://continuousdelivery.com/2014/02/visualizations-of-continuous-delivery/ 12

http://continuousdelivery.com/2014/02/visualizations-of-continuous-delivery/

|Continuous Delivery
Cloud Services for Continuous Delivery

13

|Continuous Deployment

Attention: Sometimes the term “Continuous Deployment” is
also used if you are able to continuously deploy to the test
system.

Continuous Deployment

•Automatically deploy the product into production whenever
it passes QA. 
(The logical next step after Continuous Delivery)
• The release schedule is in the hans of the It  

(With Continuous Delivery the release schedule is in the hands of
the business.)

14

Summary

|Goal of the Lecture 16

The goal of this lecture is to enable you to
systematically carry out small(er) software

projects that produce quality software.

• Projects are build using build tools
• A build script takes care of all steps necessary to build the project  

(In case of an application, building means creating a runnable application.)

|Goal of the Lecture 17

The goal of this lecture is to enable you to systematically carry out small(er)
commercial or open-source projects.

Project
Start

Project
End

Requirements Management
Domain Modeling

…
Software Project Management

Testing
Modeling

Build Process Management

Build Process Management

