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The Software (Engineering) Process is the set of
activities and associated results that produce a software
product.
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* Requirements specification

e Software specification

Definition of the software to be produced and the constraints of Its
operation.

e Software development
Design and implementation of the software.

e Software validation
To ensure that the software does what the customer requires.

e Software evolution

Adaptation and modification of the software to cope with changing
customer and market requirements.

Fundamental Process Activities

s




Software (Engineering) Process Models are
simplified and abstract description of a software process
that presents one view of that process.
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* Process models may include activities that are part of the
software process, software products, e.g. architectural
descriptions, source code, user documentation, and the
roles of people involved in software engineering.

e Examples:
* The waterfall model
* The spiral model
* "\V/-Modell (XT)" (dt.)
* eXtreme Programming
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Large(r) projects may use different (multiple) software
process models to develop different parts of the software.




The Waterfall Model
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The Waterfall Model can be considered as a generic
process model.
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1.Requirements
analysis and
definition

he requirements

are established by

consultation with

SyStem USEFS Requirements
After that they are ‘ S \
defined in detail

and serve as the
system
specification.




The Waterfall Model can be considered as a generic
process model.
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2 .System and
Software design
The overall system
architecture Is
defined. The

fU N d ame nta | Requirements
software system e

abstractions and
their abstractions T

are identified.




The Waterfall Model can be considered as a generic
process model.
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3.Implementation and
unit testing
The software design
IS realized as a set

of program units: Requirements
testing verifies that L‘\
each unit meets its @
specification. \
‘ Implementation \
and unit testing




The Waterfall Model can be considered as a generic
process model.

Software Process Models - The Waterfall Model | 9

4 .Integration and
system testing
Program units are

i A te g I’a te d a f d Requirements
definition
tested as a u TN
complete system.
Implementation \
‘ and unit testing \
‘ Integration and \
system testing




The Waterfall Model can be considered as a generic
process model.

Requirements
definition

Software Process Models - The Waterfall Model | 10

Implementation
and unit testing \‘
Integration and
system testing \
Operation and
maintenance




Key Properties of the Waterfall Model
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* The result of each phase Is a
set of artifacts that is
approved.

* The following phase starts
after the previous phase has
finished.

(In practice there might be some
overlapping.)

* [N case of errors previous
process stages have to be
repeated.

* Fits with other (hardware)
engineering process models.




The Marshmallow Challenge | 12




Agile Development

* Agile Software Development - Principles,
Patterns, and Practices; Robert C. Martin; 2003
Im Deutschen wird gelegentlich von “schneller
Softwareentwicklung” gesprochen wenn iterative
Entwicklung gemeint ist - agile Methoden bauen
auf iterativen Ansatzen auf.
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Agile Development - Key Points

Agile Software Engineering Process Models - Agile Development | 14

* The goal is to develop software quickly, in the face of
rapidly changing requirements

e Originally concelved for small to mid-sized teams

* T0 achieve aqgility we need to ...

* employ practices that provide the necessary discipline and
feedback

* employ design principles that keep "our"” software flexible
and Mmaintainable

* know the design patterns that have shown to balance those
orinciples for specific problems
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Using an agile method does not mean that the
stakeholders will alwags get what theg want.

It 5|ml:>|3 means that theg | be ablc to control

the team to gct the most lDusmess value For

the least cost.



Agile Development

 Manifesto
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Manifesto for Agile Software Development
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Individuals and interactions over process and tools.

The best tools will not help If the team doesn't
work together. Start small and grow If needed.




Manifesto for Agile Software Development
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Working software over comPrehensive documentation.

The structure of the system and the rationales for
the design should be documented.




Manifesto for Agile Software Development
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Customer co“aboration over contract negotiation.

The contract should specity how the collaboration
petween the development team and the customer

00ks like.

A contract which specifies a fixed amount of money that will be paid at
a fixed date will likely fail.




Manifesto for Agile Software Development
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Resl:)ondingto change over Fo”owinga Plan.

time
— (weeks)

Plan: precise rough big picture




Agile Development

* Principles
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Principles of Agile Development
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® QOur highest priority Is to satisfy the customer through
early and continuous delivery of valuable software

® Deliver working software frequently (e.g. every two
weeks), from a couple of weeks to a couple of months,
with a strong preference to the shorter timescale

® \\/orking software I1s the primary measure of progress
If 30% of the functionality is implemented, 30% of the project is done.

® Continuous attention to technical excellence and good
design enhances aqgility

® Simplicity - the art of maximizing the amount of work
not done - Is essential



Principles of Agile Development
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® \\elcome changing requirements, even late In
development; agile processes harness change for the
customer's competitive advantage

® At reqgular intervals, the team reflects on how to
become more effective, then tunes and adjusts Its

behavior accordingly
Process Improvement

® [Nhe best architectures, reqguirements, and designs
emerge from self-organizing teams



Principles of Agile Development
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® Business people and developers must work together
dally throughout the project

® Build projects around motivated individuals; give them
the environment and support they need, and trust
them to get the job done

® Agile processes promote sustainable development;
the sponsors, developers, and users should be able to

Maintain a constant pace indefinitely
Workload

| not sustainable

I
I
| | A —
sustainable |4—

M1 M2 Release
I
I




Agile Processes
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® SCRUM(~Project Management Method)
® (Agile) Unified Process

® Extreme Programming
o



Unified Process

A Very First Glimpse
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Unified Process - Phases
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1. Inception (~dt. Konzeption)
Feasibility phase, where just enough Investigation Is
done to support a decision to continue or stop

2. Elaboration (—dt Entwurf)
The core architecture iIs iteratively implemented; high

risks are mitigated
(mitigate =dt. mildern / abschwachen)

3. Construction (—~dt. Konstruktion)
iterative implementation of remaining lower risk and
easler elements, and preparation for deployment

4 Transition (—~dt. Ubergabe)
Beta tests, deployment
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1 2 3 4 5 20 iterations
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clarifying iteration goals

start coding & testing

de-scope iteration goals if too much work

agile modeling & design

iterations

requirements
workshop

next iteration planning
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General Practices
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® Tackle high-risk and high-value issues in early
iterations

® Continuously engage users for evaluation, feedback,
and reqguirements

® Build a cohesive core architecture in early iterations

® Continuously verify quality; test early, often, and
realistically

Apply use cases where appropriate
Do some visual modeling
Carefully manage requirements

Practice change request and configuration
Management
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In the following, we assume that we are on a project that
uses the unified process (UP) as the process model for
developing our POS application.




Current Development State
Start of the Elaboration Phase
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* The Inception phase Is over: we are entering iteration 1 of
the elaboration phase

e Most actors, goals and use cases were named
e Most use cases were written in brief format

e ~10-20% of the use cases are written in fully dressed
format

e \/ersion one of the vision Is avallable

e Technical proof of concept prototypes were developed
(E.g., can Java Swing be used with touch screen?)

e Candidate tools have been 1dentified




Artifacts That May Be Started In the Elaboration Phase
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* Domain Model
Visualization of the domain concepts

* Design Model
Description of the logical design using
class diagrams, object interaction
diagrams, package diagrams....

e Software Architecture Document
Summary of key architectural issues
and their resolution in the design

* Data Model
E.g., database schemas, mapping
strategies between object and non-
object representations

(S|9PO N W3ISAS)




Planning the First Iteration Of the Elaboration Phase
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* Apply the following criteria to rank work across iterations:

* Risk
Tackle high risk issues related to technical complexity,
usability, ...

e Coverage

Try to touch all major parts of the system in early iterations
* Criticality

Implement functionality of high business value



Ranked Requirements for the POS application

High

Reguirement

(Use Case or
Feature)

Process Sale
Logging

OOA/D - Case Studies - Setup | 37

Comment

Pervasive: hard to
add late

Medium

Maintain Users

Affects security
subdomain

Low




Requirements For
the First Iteration Of the POS Application
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* Implement a basic, key scenario of the Process Sale use
case: entering items and recelving a cash payment

e mplement a start up use case as necessary to support the
Nitialization needs of the iteration

e NO collaboration with external services such as tax
calculator or product database

e NOo complex pricing rules are applied



Extreme Programming
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Practices = dt. Verfahren / Verfahrensregeln

Extreme programming
IS made up of a set of
simple, interdependent practices.




Extreme Programming - Practices
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Customer Team Member
Customer is the person (or grouP) who defines and

Prioritizes features. The customers are members and

available to the team.




Extreme Programming - Practices
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User Stories
Requirements are talked over with the customer but onlg a

Few worcls that remincls evergboclg o1C the conversation are

written on an index card alongwith an estimate.




Extreme Programming - Practices
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Short Cycles

Working software is delivered every, e.g, two weeks (an

iteration) the delivered sottware may or may not be Put

into Procluc:txon
lterations are tlmeboxecl date sllppage s il

cannot Complete all tasks scheduled for t

remove somce.
M

egal - if you

ne iterabion

A A
d&vs d&vs c&oujs




Extreme Programming - Practices
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Short Cycles

Iteraié(bn Plan

During each iteration the user stories and their l:)rioritics
are fixed.

The customer selects the user stories theg want to have
implementecl. The number of stories is limited ]39 the
buclget, which is set bg the clevelopers.

A A A
d&vs d&fjs d&vs



Extreme Programming - Practices
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Short Cycles

%

Release Plan
Maps out approx. six iterations. Can alwags be changecl.

A A A A A
cio\js cio\js cio\vs cio\vs cio\js




Extreme Programming - Practices

Software Engineering Process Models | 46

The Planning Game
Division of responsibihtg between business and

development. Business People decide how imPortant a
(~ , ,
reature 1s ancl thc clevelopers cleocle how much that

feature will cost to implement.

A A A A A
d&js d&js do\js do\js d&js




Extreme Programming - Practices
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Acceptance Tests
Details of the user stories are cal:)turecl in the

Atteg&ow\{:e
Form omc accel:)tance tests.

tests are

Acceptance tests are written before or| (ideally
, , , black-box

concurrent with the lmplementa‘uon of a user besks
StOfy. cievai.op&d
o bv the

Once an accel:)tance test passes, it is added to customer.

the set of Passing accel:)tance tests and is never
allowed to fail again.



Extreme Programming - Practices
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Pair Programming
The code is written bﬂ Pairs of programmers; one types

the code and the other member watches the code being
tg Pecl - the kegboarcl is moved between the cle\/elopers.

The Pairs change ap‘c‘er haH: a clag to make sure that the
knowleclge IS sPreacl.

Collective Ownership
The team owns the code. A Pair has the right to check out

any moclule.
B




Extreme Programming - Practices
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Refactoring
Do Frequent reFac:torings to avoid that the code “rots”

due to addi ng feature atter feature.

Refactoring means
Improving the
structure without
changing behavior.




Extreme Programming - Practices
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Test-Driven Development
All code is written to make Fa'ling (unit) These tests

are whikte-

tests Pass‘ Ha\/mga (verg) complete boclg

box wnik

o‘” test cases 'aohtates re 'actormgs ancJ besks

o"ten (Imphotlg) leacls to |<-‘:55 couplecl d@-veioped

Gl b:j Fhe
code.

“ci@.vei.opars".




Extreme Programming - Practices
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Continuous Integration
Programmers check in their code and integratc several

times per clag; non»-blocldng source control is used. After
check-in the system s build and every test (inclucling

running, acceptance tests) is run.




Extreme Programming - Practices
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Sustainable Pace
No overtime; except inthe very last week before arelease.

Open Workspace
The team works together N an open room.




Extreme Programming - Practices
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Simple Design
Make the &esign as simple and exl:)ressive as Possible.
Focus on the current set of user stories:; dor't WOITY about

tuture user stories.

'.:'":.g. onlg add the infrastructure when a storg forces it.




Extreme Programming - Practices
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Consider the snmplest thmgthat cou cl Posablg Wor|<

Find the SImPICS’t clesgn oPtlon for the current set of user stories.
Youaren't goingtoneed it N\
Add infrastructure on19 it there is |:>roo1C or atleast compeulng e\/lclence Sima F»’i.@.
Once aﬂcl onlg once & m———

Don’t tolerate code clupllcatlon

ellmmate COCIC reclunclancxes b9 creatmg

abstract:ons E’mplog Pattems to remove
redundancies.



Extreme Programming - Planning
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® Initial Exploration (Start of the Project)

® Developers and customers try to identify all
significant user stories; 1.e., they do not try
to identify all stories

® [he developers estimate - relative to each
other - the stories by assigning story
points; a story with twice as much points as
another story Is expected to take twice as
long to Implement

® [0 know the true size we need the velocity
(velocity = time required per story point)
The velocity will get more accurate as the
project proceeds:; initially 1t 1s just guessed
based on "experience”




Extreme Programming - Planning
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® Release Planning

® Developers and customers agree on a date for the first
release (2-4 months)

® The customers pick the stories and the rough order; a

customer cannot choose more stories than the current
velocity enables

® As the velocity becomes more accurate the release plan
(I.e. the number of user stories) will be adjusted



An Example Release Plan For a
Travel Booking Project
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Time Assigned Assigned
Estimate Iteration Release
Find lowest fare. 3 2 1
Show available flights. 2 1 1
Sort available flights by convenience. 4 2
Purchase ticket. 2 1 1
Do customer profile. 4
Review itineraries 1 2 1




Extreme Programming - Planning
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® [teration Planning
® [he customer picks the stories for the iteration

® [he order of the stories within the iteration I1s a
technical decision

® The Iteration ends on the specified date (timeboxed),
even If all stories aren't done

® [he estimates for all the stories are totaled and the
velocity for that iteration is calculated

® The planned velocity for each iteration Is the measured
velocity of the previous iteration



Extreme Programming - Planning

Software Engineering Process Models - Extreme Programming | 59

® Task Planning

® At the start of each iteration the developer and
customers get together to plan

® Th stoes are down Into tasks which require
o) etvv een. 6 urs o Implement

® Faoch deve oper signs up for tasks
A developer can choose an arbitrary task - even if he Is not an expert
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‘ ‘ Example: User Stories for a Web Application

James Newkirk and Robert C. Martin
Extreme Programming in Practice; Addison Wesley, 2001



Example: User Stories for a Web Application
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Sore pages fr{iger Zhe /. ogfn mec harnS» and Sorie
dont.

The /ist oF pages 2hat do/dont is a/yna/y//c.

4 »nd 2‘/78 MeC/%Zn/SM IS Z‘r/:igerea/ once per SeSSion.




Example: User Stories for a Web Application
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Constrant

7 he Syéfe/yz wil! not pop Up a eorndocw thal coce/d
be 1nterpreted as a pop-up ad.




Example: User Stories for a Web Application
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Z.og/n Siory - Zwo o/ayé k

When he / 03//7 1S Z‘r/ﬁgerea’ , and the site cannot
detect? that the wSer 15 a member, the wSer 1S
¢ransterred o a /03//7 page, ehich asks For Zheir

wSername and passcord and explans ¢he /03//7

process & p/?f/ oS o/v/7y of he sSite.

The story is broken up into

v

Login Start Login Task
Kead coofie. Takes data #rom HTML inpit. Checks the database R
IF present for e-mail and password. Stores cookie i
Display login ack. with wuser e-mail address and Selection has been made. Kowtes to URL from
option Lo login as Someone else. where you came From if successtul. Creates
e/se Session. IF not successtul, back 2o login ewith
Bring wp login page. ressage indicating falre.




Example: User Stories for a Web Application
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Logfn Start

Kead cookie.
¥ preSenZ‘
D/‘Sp/ 2% / 03/‘/7 czcé . wth wuser e-mal/ address and

opf jon o /. 03//7 as Soreone el/Se.

e/Se
Br/ng wup / 03//7 Page.

Log/n 7as ,é

Takes data from HTML input. Checks the database
For e-mal and passcoord. Stores coofie if
Selection has been rade. Kowtes 2o UKL Fror
where you came from if successtul. Creates
session. I not successtul, back Zo login wwith
message indicaling falure.




Principles of Good Stories
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® Stories must be understandable to the customer

® Cach story must provide something of value to the
customer

® Stories need to be of a size that you can build a few of
them In each iteration

® Stories should be independent
® Fach story must be testable

INVEST

Independent, Negotiable, Valuable, Estimable, Sized appropriately, Testable




Established Templates for Writing User Stories
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® | ong template:
"As a <role>, | want <goal/desire> so that
<benefit>"

® Shorter template:
"As a <role>, | want <goal/desire>"



Different types of systems need different development
processes.
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E.g. software used in an aircratt has to be developfﬂ

using a ditferent clevelopment process as an e-commerce

web page. An oPcrating sgstem has to be cJeveloPecJ
(~

di -erent|9 from aword DIrocCessor.

In large software sustems diHterent Parts may be
</

cle\/elol:)ecl using ditterent process models.




The one software process does not exist.
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Processes have to cxploit the capabilities of the Peosle in

an organization and the speci ic characteristics of the

systems that are bej ng clevclol:)ed.




Summary
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The goal of this lecture is to enable you to

SVS
P

L[

FOJ

Mmatically carry out sma

[(er) software

ects that produce qualr

'y software.

e To systematically develop software, you have to follow a well-defined process that
suites the needs of the project under development.
e |t is practically impossible to work out all requirements right at the beginning of a

project.
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The goal of this lecture is to enable you to systematically carry out small(er)
commercial or open-source projects.

o e = = e e ———— ——— = —_——

|

Project Management

_— S S S
Project / Project
Start End

Start of an ’Iteration

B Requirements Management
B Domain Modeling

B Testing



