Dr. Michael Eichberg

Software Engineering
Department of Computer Science
Technische Universitat Darmstadt

Introduction to Software Engineering

Software Process Models

TECHNISCHE
UNIVERSITAT
DARMSTADT

The Software (Engineering) Process is the set of
activities and associated results that produce a software
product.

Software Process (Models) | 2

* Requirements specification

e Software specification

Definition of the software to be produced and the constraints of Its
operation.

e Software development
Design and implementation of the software.

e Software validation
To ensure that the software does what the customer requires.

e Software evolution

Adaptation and modification of the software to cope with changing
customer and market requirements.

Fundamental Process Activities

s

Software (Engineering) Process Models are
simplified and abstract description of a software process
that presents one view of that process.

Software Process (Models) | 3

* Process models may include activities that are part of the
software process, software products, e.g. architectural
descriptions, source code, user documentation, and the
roles of people involved in software engineering.

e Examples:
* The waterfall model
* The spiral model
* "\V/-Modell (XT)" (dt.)
* eXtreme Programming

Process Models | 4

Large(r) projects may use different (multiple) software
process models to develop different parts of the software.

The Waterfall Model

2 TECHNISCHE
: UNIVERSITAT
)r—~— DARMSTADT

The Waterfall Model can be considered as a generic
process model.

Software Process Models - The Waterfall Model | 6

1.Requirements
analysis and
definition

he requirements

are established by

consultation with

SyStem USEFS Requirements
After that they are ‘ S \
defined in detail

and serve as the
system
specification.

The Waterfall Model can be considered as a generic
process model.

Software Process Models - The Waterfall Model | 7

2 .System and
Software design
The overall system
architecture Is
defined. The

fU N d ame nta | Requirements
software system e

abstractions and
their abstractions T

are identified.

The Waterfall Model can be considered as a generic
process model.

Software Process Models - The Waterfall Model | 8

3.Implementation and
unit testing
The software design
IS realized as a set

of program units: Requirements
testing verifies that L‘\
each unit meets its @
specification. \
‘ Implementation \
and unit testing

The Waterfall Model can be considered as a generic
process model.

Software Process Models - The Waterfall Model | 9

4 .Integration and
system testing
Program units are

i A te g I’a te d a f d Requirements
definition
tested as a u TN
complete system.
Implementation \
‘ and unit testing \
‘ Integration and \
system testing

The Waterfall Model can be considered as a generic
process model.

Requirements
definition

Software Process Models - The Waterfall Model | 10

Implementation
and unit testing \‘
Integration and
system testing \
Operation and
maintenance

Key Properties of the Waterfall Model

Software Process Models - The Waterfall Model | 11

* The result of each phase Is a
set of artifacts that is
approved.

* The following phase starts
after the previous phase has
finished.

(In practice there might be some
overlapping.)

* [N case of errors previous
process stages have to be
repeated.

* Fits with other (hardware)
engineering process models.

The Marshmallow Challenge | 12

Agile Development

* Agile Software Development - Principles,
Patterns, and Practices; Robert C. Martin; 2003
Im Deutschen wird gelegentlich von “schneller
Softwareentwicklung” gesprochen wenn iterative
Entwicklung gemeint ist - agile Methoden bauen
auf iterativen Ansatzen auf.

%75 TECHNISCHE
&)=\ UNIVERSITAT
297> DARMSTADT

Agile Development - Key Points

Agile Software Engineering Process Models - Agile Development | 14

* The goal is to develop software quickly, in the face of
rapidly changing requirements

e Originally concelved for small to mid-sized teams

* T0 achieve aqgility we need to ...

* employ practices that provide the necessary discipline and
feedback

* employ design principles that keep "our"” software flexible
and Mmaintainable

* know the design patterns that have shown to balance those
orinciples for specific problems

Agile Software Engineering Process Models - Agile Development | 15

Using an agile method does not mean that the
stakeholders will alwags get what theg want.

It 5|ml:>|3 means that theg | be ablc to control

the team to gct the most lDusmess value For

the least cost.

Agile Development

 Manifesto

7 TECHNISCHE
UNIVERSITAT
DARMSTADT

Manifesto for Agile Software Development

Agile Software Engineering Process Models - Agile Development | 17

Individuals and interactions over process and tools.

The best tools will not help If the team doesn't
work together. Start small and grow If needed.

Manifesto for Agile Software Development

Agile Software Engineering Process Models - Agile Development | 18

Working software over comPrehensive documentation.

The structure of the system and the rationales for
the design should be documented.

Manifesto for Agile Software Development

Agile Software Engineering Process Models - Agile Development | 19

Customer co“aboration over contract negotiation.

The contract should specity how the collaboration
petween the development team and the customer

00ks like.

A contract which specifies a fixed amount of money that will be paid at
a fixed date will likely fail.

Manifesto for Agile Software Development

Agile Software Engineering Process Models - Agile Development | 20

Resl:)ondingto change over Fo”owinga Plan.

time
— (weeks)

Plan: precise rough big picture

Agile Development

* Principles

7 TECHNISCHE
UNIVERSITAT
DARMSTADT

Principles of Agile Development

Agile Software Engineering Process Models - Agile Development | 22

® QOur highest priority Is to satisfy the customer through
early and continuous delivery of valuable software

® Deliver working software frequently (e.g. every two
weeks), from a couple of weeks to a couple of months,
with a strong preference to the shorter timescale

® \\/orking software I1s the primary measure of progress
If 30% of the functionality is implemented, 30% of the project is done.

® Continuous attention to technical excellence and good
design enhances aqgility

® Simplicity - the art of maximizing the amount of work
not done - Is essential

Principles of Agile Development

Agile Software Engineering Process Models - Agile Development | 23

® \\elcome changing requirements, even late In
development; agile processes harness change for the
customer's competitive advantage

® At reqgular intervals, the team reflects on how to
become more effective, then tunes and adjusts Its

behavior accordingly
Process Improvement

® [Nhe best architectures, reqguirements, and designs
emerge from self-organizing teams

Principles of Agile Development

Agile Software Engineering Process Models - Agile Development | 24

® Business people and developers must work together
dally throughout the project

® Build projects around motivated individuals; give them
the environment and support they need, and trust
them to get the job done

® Agile processes promote sustainable development;
the sponsors, developers, and users should be able to

Maintain a constant pace indefinitely
Workload

| not sustainable

I
I
| | A —
sustainable |4—

M1 M2 Release
I
I

Agile Processes

Agile Software Engineering Process Models - Agile Development | 25

® SCRUM(~Project Management Method)
® (Agile) Unified Process

® Extreme Programming
o

Unified Process

A Very First Glimpse

7 TECHNISCHE
&)=\ UNIVERSITAT
9’ DARMSTADT

Unified Process - Phases

Software Engineering Processes - Unified Process | 27

1. Inception (~dt. Konzeption)
Feasibility phase, where just enough Investigation Is
done to support a decision to continue or stop

2. Elaboration (—dt Entwurf)
The core architecture iIs iteratively implemented; high

risks are mitigated
(mitigate =dt. mildern / abschwachen)

3. Construction (—~dt. Konstruktion)
iterative implementation of remaining lower risk and
easler elements, and preparation for deployment

4 Transition (—~dt. Ubergabe)
Beta tests, deployment

Unified Process | 28

1 2 3 4 5 20 iterations

Unified Process | 29

iterations

X
software ol v
Al C
O
©
rdquire 2
=5
software S M
— O
©
o
software S @
C
O
©
requirements 2
software M
O
©
requirements 2
software —
C
i)
©
requirements 2

Unified Process | 30

iterations

requirements
workshop

==
software o v
(a\ (e
O
©
=9
software S M
— O
©
(o]
software W ™
c
O
©
/4 requirements 2
(o]
software m/u a\
C
O
©
/433583%5 I 2
2 -
software o =
O
©
requirements 2

Unified Process | 31

I\
I\

|

|

| —./ _.{ _J_

R 3 g S g S 8 S 21 | g

'. = = = = = = = = = 2

| ® QL ®) 1)) ® QL) L

| 3 ® 3 @ 3 @ 3 o® 3 @

| D D D D D

[=, =] =, = =

| ()] ()] w (/)] ()]

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

;' 2% 5% 8% 10% 20%
lteration 1 lteration 2 lteration 3 lteration 4 lteration 5
- 3weeks T TTTe--___

M T IWI[Th| F

kickoff meeting
clarifying iteration goals

start coding & testing

de-scope iteration goals if too much work

agile modeling & design

iterations

requirements
workshop

next iteration planning

demo and 2-day requirements workshop

General Practices

Software Engineering Processes - Unified Process | 32

® Tackle high-risk and high-value issues in early
iterations

® Continuously engage users for evaluation, feedback,
and reqguirements

® Build a cohesive core architecture in early iterations

® Continuously verify quality; test early, often, and
realistically

Apply use cases where appropriate
Do some visual modeling
Carefully manage requirements

Practice change request and configuration
Management

OOA/D - Case Studies - Setup | 33

In the following, we assume that we are on a project that
uses the unified process (UP) as the process model for
developing our POS application.

Current Development State
Start of the Elaboration Phase

OOA/D - Case Studies - Setup | 34

* The Inception phase Is over: we are entering iteration 1 of
the elaboration phase

e Most actors, goals and use cases were named
e Most use cases were written in brief format

e ~10-20% of the use cases are written in fully dressed
format

e \/ersion one of the vision Is avallable

e Technical proof of concept prototypes were developed
(E.g., can Java Swing be used with touch screen?)

e Candidate tools have been 1dentified

Artifacts That May Be Started In the Elaboration Phase

OOA/D - Case Studies - Setup | 35

* Domain Model
Visualization of the domain concepts

* Design Model
Description of the logical design using
class diagrams, object interaction
diagrams, package diagrams....

e Software Architecture Document
Summary of key architectural issues
and their resolution in the design

* Data Model
E.g., database schemas, mapping
strategies between object and non-
object representations

(S|9PO N W3ISAS)

Planning the First Iteration Of the Elaboration Phase

OOA/D - Case Studies - Setup | 36

* Apply the following criteria to rank work across iterations:

* Risk
Tackle high risk issues related to technical complexity,
usability, ...

e Coverage

Try to touch all major parts of the system in early iterations
* Criticality

Implement functionality of high business value

Ranked Requirements for the POS application

High

Reguirement

(Use Case or
Feature)

Process Sale
Logging

OOA/D - Case Studies - Setup | 37

Comment

Pervasive: hard to
add late

Medium

Maintain Users

Affects security
subdomain

Low

Requirements For
the First Iteration Of the POS Application

OOA/D - Case Studies - Setup | 38

* Implement a basic, key scenario of the Process Sale use
case: entering items and recelving a cash payment

e mplement a start up use case as necessary to support the
Nitialization needs of the iteration

e NO collaboration with external services such as tax
calculator or product database

e NOo complex pricing rules are applied

Extreme Programming

7 TECHNISCHE
@Y=, UNIVERSITAT

‘ 0

)r—~— DARMSTADT

Software Engineering Process Models | 40

Practices = dt. Verfahren / Verfahrensregeln

Extreme programming
IS made up of a set of
simple, interdependent practices.

Extreme Programming - Practices

Software Engineering Process Models | 41

Customer Team Member
Customer is the person (or grouP) who defines and

Prioritizes features. The customers are members and

available to the team.

Extreme Programming - Practices

Software Engineering Process Models | 42

User Stories
Requirements are talked over with the customer but onlg a

Few worcls that remincls evergboclg o1C the conversation are

written on an index card alongwith an estimate.

Extreme Programming - Practices

Software Engineering Process Models | 43

Short Cycles

Working software is delivered every, e.g, two weeks (an

iteration) the delivered sottware may or may not be Put

into Procluc:txon
lterations are tlmeboxecl date sllppage s il

cannot Complete all tasks scheduled for t

remove somce.
M

egal - if you

ne iterabion

A A
d&vs d&vs c&oujs

Extreme Programming - Practices

Software Engineering Process Models | 44

Short Cycles

Iteraié(bn Plan

During each iteration the user stories and their l:)rioritics
are fixed.

The customer selects the user stories theg want to have
implementecl. The number of stories is limited]39 the
buclget, which is set bg the clevelopers.

A A A
d&vs d&fjs d&vs

Extreme Programming - Practices

Software Engineering Process Models | 45

Short Cycles

%

Release Plan
Maps out approx. six iterations. Can alwags be changecl.

A A A A A
cio\js cio\js cio\vs cio\vs cio\js

Extreme Programming - Practices

Software Engineering Process Models | 46

The Planning Game
Division of responsibihtg between business and

development. Business People decide how imPortant a
(~ , ,
reature 1s ancl thc clevelopers cleocle how much that

feature will cost to implement.

A A A A A
d&js d&js do\js do\js d&js

Extreme Programming - Practices

Software Engineering Process Models | 47

Acceptance Tests
Details of the user stories are cal:)turecl in the

Atteg&ow\{:e
Form omc accel:)tance tests.

tests are

Acceptance tests are written before or| (ideally
, , , black-box

concurrent with the lmplementa‘uon of a user besks
StOfy. cievai.op&d
o bv the

Once an accel:)tance test passes, it is added to customer.

the set of Passing accel:)tance tests and is never
allowed to fail again.

Extreme Programming - Practices

Software Engineering Process Models | 48

Pair Programming
The code is written bﬂ Pairs of programmers; one types

the code and the other member watches the code being
tg Pecl - the kegboarcl is moved between the cle\/elopers.

The Pairs change ap‘c‘er haH: a clag to make sure that the
knowleclge IS sPreacl.

Collective Ownership
The team owns the code. A Pair has the right to check out

any moclule.
B

Extreme Programming - Practices

Software Engineering Process Models | 49

Refactoring
Do Frequent reFac:torings to avoid that the code “rots”

due to addi ng feature atter feature.

Refactoring means
Improving the
structure without
changing behavior.

Extreme Programming - Practices

Software Engineering Process Models | 50

Test-Driven Development
All code is written to make Fa'ling (unit) These tests

are whikte-

tests Pass‘ Ha\/mga (verg) complete boclg

box wnik

o‘” test cases 'aohtates re 'actormgs ancJ besks

o"ten (Imphotlg) leacls to |<-‘:55 couplecl d@-veioped

Gl b:j Fhe
code.

“ci@.vei.opars".

Extreme Programming - Practices

Software Engineering Process Models | 51

Continuous Integration
Programmers check in their code and integratc several

times per clag; non»-blocldng source control is used. After
check-in the system s build and every test (inclucling

running, acceptance tests) is run.

Extreme Programming - Practices

Software Engineering Process Models | 52

Sustainable Pace
No overtime; except inthe very last week before arelease.

Open Workspace
The team works together N an open room.

Extreme Programming - Practices

Software Engineering Process Models | 53

Simple Design
Make the &esign as simple and exl:)ressive as Possible.
Focus on the current set of user stories:; dor't WOITY about

tuture user stories.

'.:'":.g. onlg add the infrastructure when a storg forces it.

Extreme Programming - Practices

Software Engineering Process Models | 54

Consider the snmplest thmgthat cou cl Posablg Wor|<

Find the SImPICS’t clesgn oPtlon for the current set of user stories.
Youaren't goingtoneed it N\
Add infrastructure on19 it there is |:>roo1C or atleast compeulng e\/lclence Sima F»’i.@.
Once aﬂcl onlg once & m———

Don’t tolerate code clupllcatlon

ellmmate COCIC reclunclancxes b9 creatmg

abstract:ons E’mplog Pattems to remove
redundancies.

Extreme Programming - Planning

Software Engineering Process Models - Extreme Programming | 55

® Initial Exploration (Start of the Project)

® Developers and customers try to identify all
significant user stories; 1.e., they do not try
to identify all stories

® [he developers estimate - relative to each
other - the stories by assigning story
points; a story with twice as much points as
another story Is expected to take twice as
long to Implement

® [0 know the true size we need the velocity
(velocity = time required per story point)
The velocity will get more accurate as the
project proceeds:; initially 1t 1s just guessed
based on "experience”

Extreme Programming - Planning

Software Engineering Process Models - Extreme Programming | 56

® Release Planning

® Developers and customers agree on a date for the first
release (2-4 months)

® The customers pick the stories and the rough order; a

customer cannot choose more stories than the current
velocity enables

® As the velocity becomes more accurate the release plan
(I.e. the number of user stories) will be adjusted

An Example Release Plan For a
Travel Booking Project

Extreme Programming | 57

Time Assigned Assigned
Estimate Iteration Release
Find lowest fare. 3 2 1
Show available flights. 2 1 1
Sort available flights by convenience. 4 2
Purchase ticket. 2 1 1
Do customer profile. 4
Review itineraries 1 2 1

Extreme Programming - Planning

Software Engineering Process Models - Extreme Programming | 58

® [teration Planning
® [he customer picks the stories for the iteration

® [he order of the stories within the iteration I1s a
technical decision

® The Iteration ends on the specified date (timeboxed),
even If all stories aren't done

® [he estimates for all the stories are totaled and the
velocity for that iteration is calculated

® The planned velocity for each iteration Is the measured
velocity of the previous iteration

Extreme Programming - Planning

Software Engineering Process Models - Extreme Programming | 59

® Task Planning

® At the start of each iteration the developer and
customers get together to plan

® Th stoes are down Into tasks which require
o) etvv een. 6 urs o Implement

® Faoch deve oper signs up for tasks
A developer can choose an arbitrary task - even if he Is not an expert

Software Engineering Process Models - Extreme Programming | 60

‘ ‘ Example: User Stories for a Web Application

James Newkirk and Robert C. Martin
Extreme Programming in Practice; Addison Wesley, 2001

Example: User Stories for a Web Application

Software Engineering Process Models - E me Programming | 61

Sore pages fr{iger Zhe /. ogfn mec harnS» and Sorie
dont.

The /ist oF pages 2hat do/dont is a/yna/y//c.

4 »nd 2‘/78 MeC/%Zn/SM IS Z‘r/:igerea/ once per SeSSion.

Example: User Stories for a Web Application

Software Engineering Process Models - Extreme Programming | 62

Constrant

7 he Syéfe/yz wil! not pop Up a eorndocw thal coce/d
be 1nterpreted as a pop-up ad.

Example: User Stories for a Web Application

Software Engineering Process Models - Extreme Programming | 63

Z.og/n Siory - Zwo o/ayé k

When he / 03//7 1S Z‘r/ﬁgerea’ , and the site cannot
detect? that the wSer 15 a member, the wSer 1S
¢ransterred o a /03//7 page, ehich asks For Zheir

wSername and passcord and explans ¢he /03//7

process & p/?f/ oS o/v/7y of he sSite.

The story is broken up into

v

Login Start Login Task
Kead coofie. Takes data #rom HTML inpit. Checks the database R
IF present for e-mail and password. Stores cookie i
Display login ack. with wuser e-mail address and Selection has been made. Kowtes to URL from
option Lo login as Someone else. where you came From if successtul. Creates
e/se Session. IF not successtul, back 2o login ewith
Bring wp login page. ressage indicating falre.

Example: User Stories for a Web Application

Software Engineering Process Models - Extreme Programming | 64

Logfn Start

Kead cookie.
¥ preSenZ‘
D/‘Sp/ 2% / 03/‘/7 czcé . wth wuser e-mal/ address and

opf jon o /. 03//7 as Soreone el/Se.

e/Se
Br/ng wup / 03//7 Page.

Log/n 7as ,é

Takes data from HTML input. Checks the database
For e-mal and passcoord. Stores coofie if
Selection has been rade. Kowtes 2o UKL Fror
where you came from if successtul. Creates
session. I not successtul, back Zo login wwith
message indicaling falure.

Principles of Good Stories

Software Engineering Process Models - Extreme Programming | 65

® Stories must be understandable to the customer

® Cach story must provide something of value to the
customer

® Stories need to be of a size that you can build a few of
them In each iteration

® Stories should be independent
® Fach story must be testable

INVEST

Independent, Negotiable, Valuable, Estimable, Sized appropriately, Testable

Established Templates for Writing User Stories

Software Engineering Process Models - Extreme Programming | 66

® | ong template:
"As a <role>, | want <goal/desire> so that
<benefit>"

® Shorter template:
"As a <role>, | want <goal/desire>"

Different types of systems need different development
processes.

Software Process Models | 67

E.g. software used in an aircratt has to be developfﬂ

using a ditferent clevelopment process as an e-commerce

web page. An oPcrating sgstem has to be cJeveloPecJ
(~

di -erent|9 from aword DIrocCessor.

In large software sustems diHterent Parts may be
</

cle\/elol:)ecl using ditterent process models.

The one software process does not exist.

Software Process Models | 68

Processes have to cxploit the capabilities of the Peosle in

an organization and the speci ic characteristics of the

systems that are bej ng clevclol:)ed.

Summary

Goal of the Lecture | 70

The goal of this lecture is to enable you to

SVS
P

L[

FOJ

Mmatically carry out sma

[(er) software

ects that produce qualr

'y software.

e To systematically develop software, you have to follow a well-defined process that
suites the needs of the project under development.
e |t is practically impossible to work out all requirements right at the beginning of a

project.

Goal of the Lecture | 71

The goal of this lecture is to enable you to systematically carry out small(er)
commercial or open-source projects.

o e = = e e ———— ——— = —_——

|

Project Management

_— S S S
Project / Project
Start End

Start of an ’Iteration

B Requirements Management
B Domain Modeling

B Testing

