Dr. Michael Eichberg

Software Technology Group
Department of Computer Science
Technische Universitat Darmstadt

Introduction to Software Engineering

On to
Object-oriented Design

TECHNISCHE
UNIVERSITAT
DARMSTADT

Object-oriented Design | 2

A popular way of thinking about the design of software
objects and also large scale components Is in terms of
responsibilities, roles and collaborations.

Object-oriented Design | 3

Cloop, Jmore femsll_ entertiem(temid, QUantiys—y,

| description, total

Which class / object should have which
responsibility?

Object-oriented Design

Object-oriented Design | 4

® Artifacts that are/can be used as input for the object-
oriented design

® 5 domain (analysis / conceptual) model

® (Jescriptions of use-cases (user stories) which are under
development in the current iterative step

® 3 system sequence diagram

® Next steps:

BUlld Interaction diagrams for system operations of
the use-cases at hand by applying guidelines and
orinciples for assigning responsibilities

Responsibility for System Operations

Object-oriented Design | 5

® During system behavior analysis (e.g. of the POS
system), system operations are assigned to a

conceptual class (e.g. System)
Does not necessarily imply that there will be a class System in the

design.

® A controller class is assigned to perform the system
operations

System
endSale()
enterltem()
makePayment()

Responsibility for System Operations

Object-oriented Design | 6

® During system behavior analysis (e.g. of the POS

conceptu| whno should be responsible f?or
Does not Nd 1o dling system operations: Cetom i the
design. | Niect
What first 0DJ€E |
® A controll recelves arjd %oordmates etem
operation{ a system operation:

System
endSale()
enterltem()
makePayment()

Responsibility for System Operations

Object-oriented Design | 7

® During system behavior analysis (e.g. of the POS

system), sustam ocmaw=—t | O d
conceptul who should be responsyb\e f?or
Does not I handling SyStEm Operat\ons. he design.
irst object |
® A controll| What hirst ob] nd coordinates [SYsterm
operation receives d
a system operation?

he system operations become
the starting messages entering
the controllers for domain layer
iNnteraction diagrams.

endSale()
enterltem()
makePayment()

Interaction Diagrams for System Operations

Object-oriented Design | 8

® (reate a separate diagram for each system operation
N the current development cycle

® (Jse the system operation, e.qg., enterltem(), as
starting message

® [f 3 dlagram gets complex, split it into smaller
diagrams

® Distribute responsibilities among classes:

® from the conceptual model and may be others added
during object design
The classes will collaborate for performing the system
operation.

® pased on the description of the behavior of system
operations

Foundations of
Object-oriented Design

%574 TECHNISCHE
&)=\ UNIVERSITAT
' DARMSTADT

Respon« bility

Responsibility | 10

R. Martin
Fach responsibilitg s an axis of change.

When the requirements change, a change will manifest
through a change In responsibilit9 amongst the classes.
it a class has multiple resPonsibilities, t has multiple

reasons to change.

Object-oriented Design - Responsibility | 11

Assighing Kes FOM bit&&v to classes

is one of the most important activities during
the design. Patterns, idioms, principles ebe help
i assigning the responsibilities.

Object-oriented Design - Responsibility | 12

N Q@.SF.?OM bﬁ.&v—driven Design (RDD) we think of
software objects as having responsibilities.

he responsibilities are assigned to classes of objects
during object-design.

Responsibilities are related to the obligations or
behavior of an object in terms of its role.
We can distinguish two basic types of responsibilities.

Object-oriented Design - Responsibility | 13

* Doing responsibilities

e Doing something itself
.. Ccreating an object or doing a calculation.

* [nitiating action in other objects

e Controlling and coordinating activities in other objects

* Example: a Sale object is responsible for creating SalesLineltem objects
* Knowing responsibilities
e Knowing about private encapsulated data
e Knowing about related objects
e Knowing about things it can derive or calculate

* Example: a Sale is responsible for knowing its total

Responsibilities are assigned to objects by using
methods of classes to implement them.

Object-oriented Design - Responsibility | 14

* To Implement a responsibility, methods act alone or
collaborate with other methods (of other objects):

* 1 method in 1 object, clepenclmgon the

* 5 methods in 1 object, granularltg of the
* 50 methods across 10 objects

responsibilitg

A responsibility 1s not the same thing as a method.

Responsibilities are assigned to objects by using
methods of classes to implement them.

Object-oriented Design - Responsibility | 15

Examples:

* Providing access to data
bases may involve dozens

of classes Assigning responsibilities to
. . classes is one of the most
e Print a sale may nvolve important activities during the
' design.
Omy d Slﬂg|€ or a few Patterns, idioms, principles etc.
methods help in assigning the

responsibilities.

A responsibility Is not the same thing as a method.

Object-oriented Design - Responsibility | 16

How does one determine the assignment of responsibilities
to various objects?

Object-oriented Design - Responsibility | 17

How does one determine the assignment of responsibilities
to various objects?

There is a great variability in responsibility
assignment :

» Hence, "good” and "poor” designs, “beautiful"
and "ugly" designs. "efficient" and "inefficient"
designs.

» Poor choices lead to systems which are fragile

and hard to Maintain, understand reuse or
extend!

Coupling

Object-oriented Design - Coupling | 18

r =

Coupling measures the strength of
dependence between classes anad
packages.

» Class C1 is coupled to class C2 if C1
requires C2 directly or indirectly.

P A class that depends on 2 other classes
has a lower coupling than a class that
depends on 8 other classes.

-

Coupling is an
evaluative principle'

-

Common Forms of Coupling in Java

Object-oriented Design - Coupling | 19

Type X has an attribute that refers to a type Y instance
or type Y itself

class X{ private Y y = ..}
class X{ private Object o = new Y(); }

A type X object calls methods of a type Y object

class Y{fO{;}}
class X{ XO{new Y.fO;}}

Type X has a method that references an instance of

type Y (E.g. by means of a parameter, local variable, return type,...)
class Y{}

class X{ XCy Y){.}}
class X{ Y fO{..}}

class X{ void f(O{Object y = new Y();}}

Type X Is a subtype of type Y
z%gzz ;{ixtends Y{}

Coupling in Java - Exemplified

Coupling | 20
Class Qu1tAct10n IS package de.tud.simpletexteditor;
coupled with:
. . import java.awt.event.ActionEvent;

e ActionlListener import java.awt.event.ActionlListener;
e ActionEvent public class QuitAction implements ActionlListener

. : {
e ava.lang.Override

| @0verride
®|dVa. aﬂg.System public void actionPerformed(ActionEvent ¢)

. : {
®|aVa. aﬂgObjeCt System.exit(0);

3

Example Source Code

Coupling

Object-oriented Design - Coupling | 21

® High Coupling
A class with high coupling i1s undesirable, because...

® changes In related classes may force local changes

® harder to understand In 1solation

® Nharder to reuse because Its use requires the inclusion of
all classes it Is dependent upon

Coupling

Object-oriented Design - Coupling | 22

® [ow Coupling
Low coupling supports design of relatively
Independent, hence more reusable, classes

® (Generic classes, with high probability for reuse, should
have especlally low coupling

® \ery little or no coupling at all Is also not desirable

® (Central metaphor of OO: a system of connected objects
that communicate via messages

® |[ow coupling taken to excess results in active objects
that do all the work

Coupling

Object-oriented Design - Coupling | 23

® [ow Coupling
Low coupling supports design of relatively
INndependent, hence more reusable, classes

euse. should

® (eneric classes, with hiah neahk

have es
High coupling to stable

® \Very little elements and to pervasive Hlesirable
® Centralm{ elements is seldom a ected objects
that com problem.

® | ow coupll : N active objects
that do all the work

Coupling

Object-oriented Design - Coupling | 24

® [ow Coupling
Low coupling supports design of relatively
INndependent, hence more reusable, classes

have espeg
® \/ery little
® Central m (mythical!) Projec ected objects

esirable

® | OW COUPm
that do all the wor

Cohesion

Object-oriented Design - Cohesion | 25

‘

'thesion measures the strength of the relationship
amongst elements of a class.

All operations and data within a class should
"naturally belong” to the concept that the class
models.

L Cohesion is an A
evaluative principle!

Cohesion in Java - Exemplified

Cohesion | 26

Analysis of the

public class SimplelLinkedList {

cohesion of U,

: : . private fina ject value;
SlmpleLlnkEdLl St private final SimplelLinkedlList next;
e the constructor uses public SimpleLinkedList(

hoth fields Object , SimpleLinkedList
) q
e head uses only the this.value = ; this.next = ;
. ¥
field value
o public Object head() {
e tail uses only next return value;

}
e head and tail are

simple getters: they
do not mutate the }
state

public SimplelinkedList tail() {
return next;

Example Source Code

Cohesion in Java - Exemplified

Analysis of the
cohesion of

ColorableFigure

e L1neColor is used
only by Its getter
and setter

e f1llColor is used
only by Its getter
and setter

e Li1neColor and

fillColor have no
interdependency

Cohesion | 27

import java.awt.Color;

abstract class ColorableFigure implements Figure {

private Color l1lineColor
private Color fillColor

Color.BLACK;
Color.BLACK;

public Color getLineColor() { return lineColor; }
public void setlLineColor(Color <) {

}

lineColor = c;

public Color getFillColor() { return fillColor; }
public void setFillColor(Color c) {

}

this.fillColor = c;

Example Source Code

Types of Cohesion
Object-oriented Design - Cohesion | 28
® Coincidental

No meaningful relationship amongst elements of a
class.

® [ogical cohesion (functional cohesion)

“lements of a class perform one kind of a logical
function.

- g., Interfacing with the POST hardware.

® Temporal cohesion
All elements of a class are executed "together”.

Object-oriented Design - Cohesion | 29

To keep design complexity manageable, assign
responsibilities while maintaining high cohesion.

Low Cohesion

Object-oriented Design - Cohesion | 30

e Classes with low cohesion are undesirable, because they
are...

* hard to comprehend,
® Nard to reuse,
* hard to maintain - easily affected by change

Classes with high cohesion can often be described by a simple
sentence.

Low Cohesion

Object-oriented Design - Cohesion | 31

e Classes with low cohesion...
e often represent a very large-grain abstraction

* have taken responsibility that should have been delegated to
other objects

Classes with high cohesion can often be described by a simple
sentence.

Object-oriented Design | 32

Design needs Principles.

Object-oriented Design | 33

LA class should have ov\tv one

reason to change. '
P

Le. o responsibility is primarily a reason for change.

The Single Responsibility Principle
Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Example: a Rectangle Class

The Single Responsibility Principle Object-oriented Design | 34
Rectangle
Computational L] |
Geometry > +draw() < AGraIEDChalfl?)ln
Application +area() : double PP
- |
—
: |
| I
I
— V |
I
GU [€T—T—----—--

Does the Rectangle class have
a single resl:)onsibilitg or does it ;

have multiple responsibili’cies *

Example: a Rectangle Class

The Single Responsibility Principle Object-oriented Design | 35
Rectangle
Computational L] |
Geometry > +draw() é AGraIEDChaIfI?)ln
Application +area() : double PP
T —— |
—
: |
I |
|
— v |
|
GU [€T—T—----—--

The Rectangle class has multiple responsibilities:

e Calculating the size of a rectangle; a mathematical model

* o render a rectangle on the screen; a GUI related functionality

Do you see any Prob ems”?

Example: a Rectangle Class

The Single Responsibility Principle Object-oriented Design | 36
Rectangle
Computational | _ o :
Geo_met_ry > +draw() < A%I;chltci?)ln
Application +area() : double
T —— |
—
| |
, |
|
— V |
|
Gu €T TT-------

Problems due to having multiple responsibilities:

* Reuse of the Rectangle class (e.g. iIn a math package) Is hindered

due to the dependency on the GUI package
(GUI classes have to be deployed along with the Rectangle class)

* A change in the Graphical Application that results in a change of
Rectangle requires that we retest and redeploy the Rectangle class
N the context of the Computational Geometry Application

Example: Rectangle classes with single responsibilities

The Single Responsibility Principle Object-oriented Design | 37
Computational _
Gepometry Graphical ~ F—=—==-—- 9
Application Application .
|
|
—
! |
: ' |
\4 | !
Geometric Rect\ztlngle 4
Rectangle < — _ _ S .
+area() : double +draw()

The solution Is to separate the functionality for drawing a rectangle
and the functionality for doing calculations are separated.

Coupling? Cohesion?

Example: Handling Persistence

The Single Responsibility Principle Object-oriented Design | 38
Employee

Persistence < — —
Subsystem

+CalculatePay()
+Store(...)

Do we need to change the Employee class?

Example: Handling Persistence

The Single Responsibility Principle Object-oriented Design | 39
Employee

Persistence < — —
Subsystem

+CalculatePay()
+Store(...)

Two responsiblilities:

* Business functionality

* Persistence related functionality

Do we need to change the Employee class?

Orthogonality

Object-oriented Design | 40

Two or more things are orthogonal If changes in one do not
affect any of the others; e.g. If a change to the database code
does not affect your GUI code, both are said to be orthogonal.

|fzc anges,
ciyrenunn
nchanged

e

4

> N

Andrew Hunt and David Thomas; The Pragmatic Programmer; Addison-Wesley, 2000

GRASP

General Responsibilif ssremeneemronn AT Principles

* The following slides make ex aterial UECHINISC =
UNIVERSITAT
from: DARMSTADT

Applying UML and Patterns, 5ra euiuon; Crailg Larman;
Prentice Hall

Fundamental GRASPrinciples...

GRASPrinciples | 42

* Controller |' -
The GRASPrinciples
* Creator

| are a learning ald.
* (Information)Expert

GRASP - Controller - Candidates

GRASP - Controller | 43

® During system behavior analysis (e.g. of the POS
system), system operations are assigned to a
conceptual class (e.g. System)

® A class Is assigned to perform these operations.

System
endSale()
enterltem()
makePayment()

Who should be responsible for hanc”ing system

oPerations? s ,

What first object begoncl the U Iager receives and .

coordinates a sgstem operation?

GRASP - Controller - Candidates

GRASP - Controller | 44

® Facade controller

~
A class that represents the overall @%Q
‘system” or "business” CRRC
O 2% O G
O, A o/ o
® Use Case controller O\%O%?Q P
A class that represents an artificial //@/\

handler of all events of a use case

enterltem(itemld,quantity)-

' 1077

enterltem(itemld,quantity)-

| :POST Real world actor

| :Register | Facade: overall system

' :ProcessSaleHandler Use-case handler

enterltem(itemld,quantity)—

enterltem(itemld,quantity)—-

GRASP - Controllers and High Cohesion

GRASP - Controller | 45

® Facade controllers are suitable when there are only a
"few" system events

® Use Case controller

These are not domain objects, these are artificial
constructs to support the system.

® (Good when there are many system events across
several processes

® Possible to maintain state for the use case, e.g., to
identify out-of-sequence system events: a
MmakePayment before an endSale operation

GRASP - Controllers and Responsibility

GRASP - Controller | 46

® A controller should mostly coordinate activities

® Delegate to other objects work that needs to be done
® Signs of a bloated controller:

® Recelves all system events

® Performs all tasks itself without delegating

® Has many attributes and maintains significant
information about the domain

® Duplicates information found in other objects

Split a bloated controller nto use case controllers
- [ikely to help in maintaining low coupling and
high cohesion.

GRASP - Controllers and Presentation Layer

GRASP - Controller | 47

® (| objects and the Ul layer should not have the
responsibility for handling system events
-xamples that do not qualify as controllers:
"Window", "Menu ltem”, "Sensor", ...

® System operations should be handled by objects

belonging to the domain layer
This Increases the reuse potential: "encapsulation” of

the business process

GRASP - Controllers and Presentation Layer
Bad Design vs. Good Design

GRASP - Controller | 48

o A user-interface-as-controller design ...

* reduces the opportunity to reuse domain process logic In
future applications

* it IS bound to a particular interface that is seldom applicable
~In other apphcatmns |

. Placmg system operann respon5|b|l|ty N a domam obJect
controller makes it easier ...

* to unplug the interface layer and use a different interface
technology
E.g. In case of multi-channel application.

°* to run the system in an off-line "batch” mode

GRASP - Controllers and Presentation Layer
Bad Design

GRASP - Controller | 49

QOO Process Sale
c
O
) UPC
g2
c .
g - Quantity
() R | Balance
gD

presses
¥ //-bjdttepr__:> Enter Item End Sale Make Payment
:Cashier
actionPerformed(actionEvent) |
:Sale]Frame ~. s ———=
J - —-4' Implementation of 'L
O , Business Logic |
o 0
O >
— ©
C ol
O e
4—’ [1| .
S 1: makeLineltem(...) =
= E :Sale
Q 0
o e
—

GRASP - Controllers and Presentation Layer
Good Design

GRASP - Controller | 50

QOO Process Sale

C
O
'-lr—*_U g UPC
c .
Q - Quantity
= |

Balance
£7°0

/\(presses
/"bHEtGH-——E> Enter Item End Sale Make Payment
Cashier
actionPerformed(actionEvent) |
:SaleJFrame
O
s— im
oY Do | 1: enterltem(itemld,quantity) {
1 @© |Controller,
S
\

== \ |
15 L N | 1.1: makeLineltem(...) =
= g ~®:Register ‘Sale
o)

GRASP - Controllers - Summary

System

endSale()
enterltem()

makePayment()

System
operations
discovered
during

analysis.

|

system behavior

GRASP - Controller | 51

Register

endSale()
enterltem(...)
makeNewSale(...)

makePayment(...)

Allocation of syst
operations during
design.

System operations - identified during analysis - are assigned -
during design - to one or more non-Ul classes called controllers
that define an operation for each system operation

Example

Designing makeNewSale of the ProcessSale Use Case

GRASP - Case Study | 52

System Operation

Contract

Preconditions

None

Postconditions

e 3 Sale Instance s was created
Instance creation

e S was associated with the Register
Association formed

e the attributes of s are Initialized

Example
Designing makeNewSale of the ProcessSale Use Case

Choosing the Controller for makeNewSale

GRASP - Case Study | 53

e What first object begoncl the U layer receives and

coordinates a sgstem oPeration?

o A controller is the first object beyond the Ul layer that Is
responsible for receiving or handling a system operation

message.
Controller

Example
Designing makeNewSale of the ProcessSale Use Case

Choosing the Controller for makeNewSale

GRASP - Case Study | 54

» A class that represents the overall
system, a root object, a
specialized device, or a major

subsystem:
» a Store object representing the
- Sale Store
entire store date address
: , o time name
» a Register object (a specialized — o C—
device that the software runs Captured-on p
Houses
on)
: 1
» Represents a receiver or handler

Register

of all system events of a use case
(artificial object):

» o ProcessSaleHandler object

Possible Alternatives
» a ProcessSaleSession object (as Suggested by Controller)

Example
Designing makeNewSale of the ProcessSale Use Case

Choosing the Controller for makeNewSale

GRASP - Case Study | 55

- - Reasoning
eRegister would represent @ e e e
device facade controller

eRecall from the discussion Sl STore
of Controller: e e
... Device facade F--l Captured-on »

Houses

controllers are suitable
when there are only a kegister
“few” system events... S —

1

Example
Designing makeNewSale of the ProcessSale Use Case

Choosing the Controller for makeNewSale

GRASP - Case Study | 56

Reasoning

e CNh00OSINg a Store object
would lead to low cohesion e .
[T we continue using Store date address
for everything. ——F..l T

Captured-on p

e Choosing Store results In a

high representational gap

Houses

1

Register

Example
Designing makeNewSale of the ProcessSale Use Case

Choosing the Controller for makeNewSale

GRASP - Case Study | 57

Reasoning

e Use-case controllers ——
(ProcessSaleHandler

ProcessSaleSession) are sae Store
good when... fime ame
1
ethere are many system ‘ Captured-ond |
events across several 1

OFOC@SS@S, Register

ot IS Necessary to 1dentify
out-of-sequence system
events.

Example
Designing makeNewSale of the ProcessSale Use Case

Choosing the Controller for makeNewSale

GRASP - Case Study | 58

Conclusion

e Register would representa —_—
device facade controller.
... Device facade
controllers are suitable g?ntgsa'e f,gffgt:sre

when there are only a ——F__l ——
“few” system events... captured-on >

o ChoosHg-Sterefesus+rtow !

Houses

Register

Example
Choosing the Controller for the other System Operations

GRASP - Case Study | 59

System Sequence Diagram Interaction with the domain
layer object Register
% (as suggested by the
Process Sale Scenario
Controller pattern)
| :Cashier | | :System |
E makeNewSale »E‘
loop J [more items] i enterltem(itemld, quantity) ’El E makeNewsale- , ‘Register
. description,price, total i o ententem™ —— Register]
! ! endSale-
= endsale 5 [iRegister |
| P l
: total with taxes : ' makePayment—
B e | :Register |
i |] Layeri Domain Layer
i makePayment (amount) »i
i change due, receipt i
S TTTTTTTTTTTTToToTT oo T

GRASP - Information Expert

GRASP - Information Expert | 60

* wWhat is the most basic, general Principle of responsibility
assign’?
® Assign a responsibility to an information expert, 1.e., to

a class that has the information needed to fulfill that
responsibility.

GRASP - Information Expert - Example

Calculating the Grand Total

Sale
time

1

Contains

1.

Sales
Lineltem

Described-by

GRASP - Information Expert | 61

quantity

*

1

Product
Description

Given this conceptual model, who should be responsible for

calculating the grancl total of a sale?

GRASP - Information Expert - Example
Calculating the Grand Total

GRASP - Information Expert | 62

Sale

time Given this concel:)tual model.
| : who should be responsible
o * for calculating the grancl total
m octheony [PR OF asale?

which class has the information needed for calculating the grancl
total, i.e.,

> knowleclge of all Salesl_ineltems, and
P their subtotals?

GRASP - Information Expert - Example
Calculating the Grand Total

Sale

time

1

Contains

1..*

Sales
Lineltem

Described-by

quantity

*

1

Product
Description

GRASP - Information Expert | 63

Given this concel:)tual model.
who should be responsible
for calculating the grancl total

omc a sale?

Which class has the information needed for calculating the grancl

total, i.e., knowledge of all saleslineltems, and their subtotals?

The Sale object possesses the knowledge about all
SalelLineltems. Hence, Sale will be assigned the
responsibility.

GRASP - Information Expert - Example
Calculating the Sub Total

Sale

time

Contains

1..*

Sales
Lineltem

total() —

GRASP - Information Expert | 64

:Sale |

Described-by

quantity

B

Description

Product

1

price

which class has the information needed for calculating the

subtotals’?

GRASP - Information Expert - Example
Calculating the Sub Total

GRASP - Information Expert | 65

Foale fotel) > (gate’ which class has the

1

|

information needed for

Contains

Calculating the subtotals?

1..*
_Sales Described-by Proc_luc_t
Lineltem » Description
quantity 1 price

Required information: quantity and price of each SalesLineltem
» quantity is available with SalesLineltem
» price is available with ProductDescription

GRASP - Information Expert - Example
Calculating the Sub Total

GRASP - Information Expert | 66

t = getTotal - 1 *:st = getSubTotal —» lineltems[i]: Sale
_oale SaleLinesltem \ time

total()

Product
Description

which class has the price

- / Cl Cl]C Product éétPrice()
iNnrormation needed ror Description

, SaleLinesitem
calculatmg the subtotals? quantity

getSubtotal()

Design Class Responsibility

1.1: p = getPrice() {

Sale KNOWS Sale total
SalesLineltem KNows line item subtotal
ProductDescription KNOWS product price

GRASP - Information Expert - Summary

GRASP - Information Expert | 67

o Fulfillment of a responsibility often requires interaction
amongst several objects (4 In our example)
There are many semi-experts who collaborate in performing a task.

e Use of (Information) Expert guideline allows us to retain
encapsulation of information
Information hiding

o [t often leads to "lightweight” classes collaborating to fulfill
a responsibility

GRASP - Creator | 68

who should be responsible for creating an instance of a

class K

GRASP - Creator | 69

Who should be resl:)onsible for creating an

instance of a class 7

Assign to class B the responsibility to create an object of
class A If the following iIs true:

* B aggregates or (closely) uses objects of type A
* B records A

* B has the data to be passed to A when A Is created
B I1s an expert in the creation of A

GRASP - Creator

Sale

time

Contains

1..*

Sales
Lineltem

Described-by

GRASP - Creator | 70

quantity

*

1

Product
Description

price

who should be responsible for creating a SalesLineltem?

GRASP - Creator

GRASP - Creator | 71

Sale
time

Contains

1.*

_Sales Described-by Proo_luc_t
Lineltem " Description
quantity 1 Torice

who should be responsible for creating a Saleslineltem?

e Sale contains SalesLineltem objects: hence, Sale Is a good
candidate for creating a SalesLineltem

GRASP - Creator

GRASP - Creator | 72

Communication Diagram Class Diagram

makelLineltem(quantity) =

:Sale
Sale
time
1: create(quantity) { makeLineltem(...)
total()

:SalesLineltem

Communication diagram after assigning the responsibility
for creating SaleslLineltems to Sale.

GRASP - Creator

Variant A

Register creates an instance of
Payment and passes it to Sale.
(Suggested by Creator as Register
records Payments.)

makePayment {

1: create(quantity) -

GRASP - Creator | 73

Variant B

Sale creates an instance of
Payment.

(Suggested by Creator as Sale uses
Payment.

makePayment |

1: makePayment() -

|:Register p:Payment |
2: addPayment(p) —
:Sale |

| :Register :Sale |
1.1: create() {
| p:Payment |

which class should be responsiblc for creatinga Pagment‘?

GRASP - Creator

GRASP - Creator | 74

Variant A

reyisier cieates an instance of
Payment and passes it to Sale.

makePayment {

1: create(quantity) —

Variant B

Sale creates an instance or
Payment.

makePayment |

1: makePayment() -

p:Payment |

:Register

2: addPayment(p) —

:Sale |

Using this variant might lead to a
non-cohesive class. If there are
several system operations, and
Register does some work related to
each, it will be a large non-
cohesive class.

| :Register :Sale |
1.1: create() {
| p:Payment |

This variant supports both: high
cohesion and low coupling.

Example

Designing makeNewSale of the ProcessSale Use Case

GRASP - Case Study | 75

System Operation

Contract

Preconditions

None

Postconditions

e 3 Sale Instance s was created
Instance creation

e S was associated with the Register
Association formed

e the attributes of s are Initialized

Example
Designing makeNewSale of the ProcessSale Use Case

Creating a New Sale Object

GRASP - Case Study | 76

e Who should be resl:)onsible for creatinga new instance

01(: some class’? w

Example

Designing makeNewSale of the ProcessSale Use Case

Creating a New Sale Object

From the contract:

" .. a Sale instance was
created".

Creator suggests a class
that...

» aggregates,
» contains or
» records

the object (Sale) to be
created.

GRASP - Case Study | 77

Records-sale-of

Contained-in

Sales Fem
Lineltem 01 T €
quantity h S —
e —— *
1..%
Stocked-in
1 1
Sal: Store
date address
time name
e ——
0..1
Captured-on p
Paid-by Houses
1
Payment Register
amount
T —— T ——

Example

Designing makeNewSale of the ProcessSale Use Case

Creating a New Sale Object

From the contract:

" .. a Sale instance was
created".

Creator suggests a class
that...

P aggregates,
» contains or

» records

the object (Sale) to be
created.

1..%

Contained-in

1

Sale

date
time

Paid-by

GRASP - Case Study | 78

Records-sale-of

0..

1

1

Captured-on p

Stocked-in

Houses

No Candidate

Example

Designing makeNewSale of the ProcessSale Use Case

Creating a New Sale Object

From the contract:

" .. a Sale instance was
created".

Creator suggests a class
that...

P aggregates,
» contains O/
P records

the object (Sale) to be
created.

GRASP - Case Study | 79

Records-sale-of

.1 1

1..%

Contained-in Stocked-in

1

Sale
date
time

0..1
Captured-on p
Paid-by Houses

No Candidate

Example

Designing makeNewSale of the ProcessSale Use Case

Creating a New Sale Object

From the contract:

" .. a Sale instance was
created".

Creator suggests a class
that...

» aggregates,
P contains or
» records

the object (Sale) to be
created.

GRASP - Case Study | 80

Records-sale-of

.1 1

1..%

Contained-in

1

Sale
date
time

0..1
Captured-on p

'I_‘

Paid-by

ll_‘

*l

Stocked-in

Houses

No Candidate

Example

Designing makeNewSale of the ProcessSale Use Case

From the con

GRASP - Case Study | 81

{ract:

" the attributes of [the newly created Sale instance]

are initialized.

Since a Sale wi

Il also contain SalesLineltems it IS necessary

to further create a List object for storing the sale line

tems. ‘ :Register |
makeNewSale

————— C _rga_t_e____> lineltems :
List<SalesLineltem>

Interaction diagram showing the creation dependencies. '

Design Heuristieuwess

* |. Riel; Object-Oriented Desic lison-
Wesley, 1996

; TECHNISCHE
UNIVERSITAT
DARMSTADT

Design Heuristics

Design Heuristics | 83

Design Heuristics help to answer the guestion:
“Is It good, bad, or somewhere in between?”

Object-Oriented Design Heuristics offer insights into
object-oriented design improvement

The following guidelines are language-independent
and allow to rate the integrity of a software design

Heuristics are not hard and fast rules; they are meant
to serve as warning mechanisms which allows the
flexibility of ignoring the heuristic as necessary

Many heuristics are small tweakings on a design and

are local In nature
A single violation rarely causes major ramifications on the entire
application.

Design Heuristics | 84

Two areas where the object-oriented paradigm can
drive design in dangerous directions...

e poorly distributed systems intelligence
The God Class Problem

e Creation of too many classes for the size of the
design problem

Proliferation of Classes
(Proliferation =dt. starke Vermehrung)

A Very Basic Heuristic

Design Heuristics | 85

All data in a base class should be Private; do not use non~l:>rivate
data.

Define Protected accessor methods instead.

If you violate this heuristic your design tends to be more fragile.

e B

A Very Basic Heuristic

Design Heuristics | 86

All data in a base class should be Private; do not use non~l:>rivate
data.

Define Protectecl accessor methods | nsteacl.

public class Line {

// p and v are package visible to enable efficient access
/*package visible*/ Point p;
/*package visible*/ Vector v; Implementation of a

public boolean intersects(Line 1) {..} Line class as part of a
public boolean contains(Point p) {..} math library.

Line 11 = ..; .
Line 12 = ..; Some code In the same
// check if both lines are parallel package that uses Line

if (11.v.equals(12.v)) {.} objects.

A Very Basic Heuristic

Design Heuristics | 87

All data in a base class should be Private; do not use non~Private
data.

Define Protected accessor methods instead.

public class Line {

— —
_/*package Point/pl; Now, assume the
(/*package visible*/ Point p2;~ following change to the

public boolean intersects(Line 1) {..} implementation of Line.
ublic boolean contains(Point - o pois’

1 ’ (P) A The public interface

remains stable - just
implementation
details are changed.

Line 11 = ..;

Line 12 = .; ~ The change breaks our
// _check 1f both ,,gf Cgode
if (11l.v.equals(12.v)) {.} | '

A Very Basic Heuristic

Design Heuristics | 88

All data in a base class should be Private; do not use non~Private
data.

Define Protected accessor methods instead.

public class Line {
private Point p;
private Vector v;
public boolean intersects(Line 1) {..} "Better design.”
public boolean contains(Point p) {..} ’-—-———4

protected Vector getVector() { return v; };

¥

Line 11 = ..;

Line 12 = ..; Some code In the
// check 1f both 1lines are parallel Ssame package that

1f (l1.getVector().equals(l2.getVector())) {.} uses Line objects.

The God Class Problem

The God Class Problem | 89

Distribute system inte Iigence as unhcormlg as Possible, that is, the

toP—-—level classesin a cesign should share the work unhcormlg.

Beware cnc Classes that]’:a\/e many accessor methods cleﬁnecl N

their Public interface. Having many implies that related data and

behavior are not |<el:>t N one Place.

Beware of classes that have too much noncommunicating belﬁavion
that IS, methods that o[:)crate on a proper subset of the data

members of a class. God classes often exhibit much

noncommunicats ng behavior.

The Problem of Accessor Methods

The God Class Problem - Behavioral Form | 90

Point

+getX()
+setX(int)
+getY()
+setY(int)

P The class Point has accessor operations in the public interface.
Are there any Problems with this clesign of Point, you can think of?

P |s Point eventua”g giving too much implementation details away to

clients?

The Problem of Accessor Methods

The God Class Problem - Behavioral Form | 91

Point

+getX()
+setX(int)
+getY()
+setY(int)

P The class Point has accessor operations in the public interface.
Are there any Problems with this clesign of Point, you can think of?

P |s Point eventua”g giving too much implementation details away to

clients?

The answer to this question is: “No, accessor methods do not

necessarilg expose implementation details.”

The Problem of Accessor Methods

The God Class Problem - Behavioral Form | 92

Point

+getX()
+setX(int)
+getY()
+setY(int)

But, still there is an issue. What is it?
P Accessor methods indicate poor encapsulation of related data

and behavior; someone Is getting the x- and y-values of Point
objects to do something with them - executing behavior that Is
related to points - that the class Point is not providing

P Often the client that is using accessor methods is a god class

W ol alVa Wl alala W N FaWa Al ull el el B ol e W b =il el o Wa' N I il Wl e\ i el W i W il . W W
C URVARY ' W aurtTZCC O COUTTCT YU]] U ' AU L

q)

= ——

The Problem of Accessor Methods

The God Class Problem - Behavioral Form | 93

public class Line {
private Point p;
private Vector v;
public boolean intersects(Line 1) {..}

public boolean contains(Point p) {.} Reconsider the
protected Vector getVector() {return v;}; Line Class.
public boolean isParallel(Line 1) {.};

Some code In

Line 11 = .;

Line 12 = ..; the same

// check if both lines are parallel package that
uses Line

1f (l1l.isParallel(l2)) {..} _
objects.

Two Reasonable Explanations For the Need of Accessor
Methods...

The God Class Problem - Behavioral Form | 94

P ... a class performing the gets and sets is implementing
a policy
(policy = dt. Verfahren(-sweise))

P oritisin the interface portion of a system consisting

of an object-oriented model and a user interface
(The Ul layer needs to be able to get the data to visualize It.)

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

The God Class Problem - Behavioral Form | 95

Student Course

Captures static information
about the course objects,
e.g., the course number,
description, duration,
MminiMum and maximum
number of students, list of
prerequisites, etc.

Captures static information
about students, e.g.. name,
identification number, list of
courses (s)he has taken, etc.

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

The God Class Problem - Behavioral Form | 96

CourseOffering

Captures static and dynamic
information related to a
particular section of a given
course, e.g., the course
being offered, the room and
schedule, instructor, list of
attendees, etc.

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

The God Class Problem - Behavioral Form | 97

addStudent(s) {

2: checkPrereq(c) « 1. c = getCourses() -

| :Course :CourseOffering s:Student |

First design for checking the prerequisites of students

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

The God Class Problem - Behavioral Form | 98

addStudent(s)
2: checkPrereq(c) « | | 1: ¢ = getCourses() =

[:Course] [:CourseOffering | [_s:Student |
®
addStudent(s) |
1: p = getPrereq() « 2: check(p) —»
| :Course P~ 9 k. :CourseOffering i s:Student |

Second design for checking the prerequisites of students

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

The God Class Problem - Behavioral Form | 99

addStudent(s)
2: checkPrereq(c) « | | 1: ¢ = getCourses() =

:Course | :CourseOffering | s:Student
addStudent(s) {
1: p = getPrereq() « 2: check(p) »
:Course P=9 d | :CourseOffering | P s:Student

addStudent(s) {
1: p = getPrereq() « 2: ¢ = getCourses() -

| :Course :CourseOffering | s:Student |

3: check(pc) « 1 he policy 1s implementead
by course offering.

Third design for checking the prerequisites of students

Implementing Policies Between Two or More Classes.

Example from the Course-scheduling Domain
The God Class Problem - Behavioral Form [100

addStudent(s)
2: checkPrereq(c) « | 1: ¢ = getCourses() =

:Course [:CourseOffering }— s:Student
addStudent(s) {
1: p = getPrereq() « 2: check(p) »
:Course P=9 d |_:CourseOffering | P s:Student

addStudent(s) {
1: p = getPrereq() « | 2: ¢ = getCourses() -»

:Course | :CourseOffering | s:Student

3: check(p,c) «

what do you think of these three c:lesigns?

(Discuss the pros and cons - regarding the
implementation of the policy - with your fellow
students.)

The God Class Problem - Behavioral Form Summary

The God Class Problem - Behavioral Form |101

® [N general, always try to model the real worla
(Low representational gap facilitates maintenance and evolution.)

But modeling the real world is not as important as the other heuristics.
(E.g., In the real world a room does not exhibit any behavior, but for a
heating system it is imaginable to assign the responsibility for heating up
or cooling down a room to a corresponding class.)

® Basically, a god class Is a class that does too much
(Behavioral Form)

® By systematically applying the principles that we have
studied previously, the creation of god classes
becomes less likely

Classes That Model the Roles an Object Plays

The Proliferation of Classes |102

Be sure that the abstrac’tions that you moclel are classes ancl not

simplg the roles objects P|39~

Classes That Model the Roles an Object Plays

The Proliferation of Classes |103

Variant A Variant B

class Person {..}
class Father extends Person {..}
class Mother extends Person {..}

class Person {..}

main () {
main () { Person father
Father f = new Father(..); = new Person(..);
Mother m = new Mother(..); Person mother
} = new Person(..);
3

® \\Vhether to choose Variant A or B depends on the domain you are
modeling; i.e. whether Mother and Father exhibit different

behavior

® Before creating new classes, be sure the behavior is truly different
and that you do not have a situation where each role 1s using a
subset of Person functionality

Classes That Model the Roles an Object Plays

What do you think of the Fo”owing clesign?

The Proliferation of Classes |104

Customer
{abstract}

MaleCustomer

FemaleCustomer

Which question do you have to ask 3ourse|¥ to decide if such a design makes

sense”’

Summary

TECHNISCHE
UNIVERSITAT
DARMSTADT

Goal of the Lecture |106

The goal of this lecture is to enable you to

systematically carry out sma
projects that produce quall

[(er) software
ty software.

e Always assign responsibilities to classes such that the cou

pling is as low as possible {,

the cohesion is as high as possible T and the representational gap is as minimal as

possible |.

e Coupling and cohesion are evaluative principles to help you judge OO designs.

e Design heuristics are not hard rules, but help you to identi
to become aware of potential (future) issues.

fy weaknesses in your code

Goal of the Lecture |107

The goal of this lecture is to enable you to systematically carry out small(er)
commercial or open-source projects.

——

| |
— e Software Project Management

f / - Project
p - End

Start of an ’Iteration

Project
Start

=

B Requirements Management
Domain Modeling

Testing
Coding

