
Dr. Michael Eichberg
Software Engineering
Department of Computer Science
Technische Universität Darmstadt

Software Engineering

Building Software

|Build Automation

The result of the build should always be the same - independent of the
developer’s local configuration.

“We want stable builds.”

Non-trivial Software is generally Build using Build
Automation Systems.

• The goal of a Build Automation System is to fully automate all steps
required to build the product given the source artifacts of the project.

2

|

• A Build Automation typically executes the following tasks:
• Formatting the source code
• Code Generation
• Source Code Compilation
• [if necessary] Linking Code/Packaging Code
• Running the tests
• Running static analysis tools
• Deployment to the test system/production system(s)
• Creating and publishing documentation, release notes, web pages,

…

Build Automation

The Build Automation Systems is responsible for
automatically carrying out all steps necessary to build
the product.

3

Historically

|Build Automation
Software is Build using Build Automation Systems.

• Given a Build Automation System, the product can be built:
• On-Demand  

(e.g., by a developer)
• Scheduled by a build server  

(e.g., every night)
• Triggered 

(e.g., on every commit to a version control system)

4

Historically

State of
the Art

|Build Automation

Some Examples of (Open-Source) Tools to Automate
Builds

• The family of make tools!
• Apache Ant
• Apache Maven
• gradle (Groovy Based)
• RAKE (Ruby Make)
• sbt
• …

5

State of
the Art

Historically
Automated

Dependency
Management
(To get stable

builds.)

ro
ug

h
tim

el
in

e

Internal
DSLs

Internal
DSLsInternal
DSLs

uses
XML

|An Example Build Script 6

import AssemblyKeys._

name := "BugPicker"

version := "1.1.0"

scalaVersion := "2.11.4"

scalacOptions in (Compile, doc) := Seq("-deprecation", "-feature", "-unchecked")

scalacOptions in (Compile, doc) ++= Opts.doc.title("OPAL - BugPicker")

libraryDependencies += "org.scalafx" %% "scalafx" % "1.0.0-R8"

jfxSettings

JFX.addJfxrtToClasspath := true

JFX.mainClass := Some("org.opalj.bugpicker.BugPicker")

assemblySettings

jarName in assembly := "bugpicker-" + version.value + ".jar"

test in assembly := {}

mainClass in assembly := Some("org.opalj.bugpicker.BugPicker")

resourceGenerators in Compile <+= Def.task {
 val versionFile = (baseDirectory in Compile).value / "target" / "scala-2.11" / "classes" / "org" /
"opalj" / "bugpicker" / "version.txt"
 versionFile.getParentFile.mkdirs()
 IO.write(versionFile, (version in Compile).value)
 Seq(versionFile)
}

Version
Information

Project Dependencies

Generation of other
Artifacts

Deployment information

Project Settings

Compiler Settings

Easily hundreds of lines for larger projects.

|Continuous Integration
Continuous Integration

• Continuous integration basically just means that the developer’s
working copies are synchronized with a shared mainline several
times a day.  
It was first named and proposed by Grady Booch.

• The goal is to avoid integration issues.
• CI is in particular useful in combination with automated unit tests.
• In practice a special build server is used. 

(e.g., Hudson/Jenkins)

7

|Continuous Integration
Continuous Integration - Best Practices

• Maintain a code repository
• Automate the build
• Make the build self-testing
• Everyone commits to the baseline every day
• Every commit (to baseline) should be built 

One commit - one feature; no “Mega-commits”
• Keep the build fast
• Test in a clone of the production environment
• Make it easy to get the latest deliverables
• Everyone can see the results of the latest build
• Automate deployment

8

m
us

t h
av

es
st

an
da

rd

|Continuous Integration
Travis CI

• A hosted continuous integration service for open source and
private projects.

9

|Continuous Delivery
Continuous Delivery

• Always be able to put a product into production  
(The evolution of continuous integration.)

• Practices
• Unit/Acceptance-tests
• Code coverage and static analysis
• Deployment to integration environment
• Integration tests
• Deployments to performance test environment
• Performance tests
• Alerts, reports and release notes sent out
• Deployment to release repository

10

|© http://continuousdelivery.com/2010/02/continuous-delivery/
Continuous Delivery

11

Delivery Team Version Control Build & Unit
Tests

Automated
Acceptance Tests

User Acceptance
 Tests Releases

check_in

check_in

check_in
trigger

trigger

trigger

trigger

trigger

approval

approval

feedback

feedback

feedback

http://continuousdelivery.com/2010/02/continuous-delivery/

|© http://continuousdelivery.com/2014/02/visualizations-of-continuous-delivery/ 12

http://continuousdelivery.com/2014/02/visualizations-of-continuous-delivery/

|Continuous Delivery
Cloud Services for Continuous Delivery

13

|Continuous Deployment

Attention: Sometimes the term “Continuous Deployment” is also used if
you are able to continuously deploy to the test system.

Continuous Deployment

• Automatically deploy the product into production whenever it passes
QA. 
(The logical next step after Continuous Delivery)

• The release schedule is in the hands of the IT department  
(With Continuous Delivery the release schedule is in the hands of the
business.)

14

Summary

|Goal of the Lecture

The goal of this lecture is to enable you to
systematically carry out small(er) software projects
that produce quality software.

16

• Projects are build using build tools
• A build script takes care of all steps necessary to build the project 

(In case of an application, building means creating a runnable application.)

|Goal of the Lecture

• The goal of this lecture is to enable you to
systematically carry out small(er) commercial or
open-source projects.

17

Project
Start

Project
End

Requirements Management
Domain Modeling

…
Software Project Management

Testing
Modeling

Build Process Management

Build Process Management

