
Dr. Michael Eichberg
Software Engineering
Department of Computer Science
Technische Universität Darmstadt

Software Engineering

On to
Object-oriented Design

|Object-oriented Design

A popular way of thinking about the design of software objects and also
large scale components is in terms of responsibilities, roles and
collaborations.

2

|Object-oriented Design 3

date
time

Sale

amount
Payment

quantity

Sales LineItem

Item

address
name

Store

Register

1

*
1

0..1
1..*

1

0..1

1

Captured-on ▶Paid-by

Records-sale-of

Houses

Stocked-in

Contained-in

:System
:Cashier

enterItem(itemId, quantity)

makeNewSale

description, total
loop [more items]

endSale

makePayment (amount)

Which class / object should have which responsibility?

|Object-oriented Design
Object-oriented Design

• Artifacts that are/can be used as input for the object-oriented
design:
• a domain (analysis / conceptual) model
• descriptions of use-cases (user stories) which are under

development in the current iterative step
• a system sequence diagram

• Next steps: 
Build interaction diagrams for system operations of the use-cases
at hand by applying guidelines and principles for assigning
responsibilities

4

|Object-oriented Design
Responsibility for System Operations

• During system behavior analysis (e.g. of the POS system), system
operations are assigned to a conceptual class (e.g. System) 
Does not necessarily imply that there will be a class System in the design.

• A controller class is assigned to perform the system operations

5

endSale()
enterItem()
makePayment()

System

|Object-oriented Design
Responsibility for System Operations

• During system behavior analysis (e.g. of the POS system), system
operations are assigned to a conceptual class (e.g. System) 
Does not necessarily imply that there will be a class System in the design.

• A controller class is assigned to perform the system operations

6

Who should be responsible for

handling system operations? What

first object beyond the UI layer

receives and coordinates a system

operation?

endSale()
enterItem()
makePayment()

System

|Object-oriented Design
Responsibility for System Operations

• During system behavior analysis (e.g. of the POS system), system
operations are assigned to a conceptual class (e.g. System) 
Does not imply that there will be a class System in the design.

• A controller class is assigned to perform the system operations

7

Who should be responsible for

handling system operations? What

first object beyond the UI layer

receives and coordinates a system

operation?

endSale()
enterItem()
makePayment()

System

The system operations become
the starting messages entering the

controllers for domain layer
interaction diagrams.

|Object-oriented Design
Interaction Diagrams for System Operations

• Create a separate diagram for each system operation in the
current development cycle

• Use the system operation, e.g., enterItem(), as starting message
• If a diagram gets complex, split it into smaller diagrams
• Distribute responsibilities among classes:

• from the conceptual model and may be others added during object
design 
The classes will collaborate for performing the system operation.

• based on the description of the behavior of system operations

8

Foundations of
Object-oriented Design

|Responsibility

Responsibility

R. Martin  
Each responsibility is an axis of change. 
When the requirements change, a change will manifest through
a change in responsibility amongst the classes.
If a class has multiple responsibilities, it has multiple reasons to
change.

10

|Object-oriented Design - Responsibility

Assigning Responsibility to classes is

one of the most important activities during the
design. Patterns, idioms, principles etc. help in
assigning the responsibilities.

11

© US Department of Defense

|Object-oriented Design - Responsibility

In Responsibility-driven Design (RDD) we think of software
objects as having responsibilities.

The responsibilities are assigned to classes of objects during object-design.

12

|Object-oriented Design - Responsibility

How does one determine the assignment of responsibilities to
various objects?

13

?
?

??

? ?

?

?

?

|Object-oriented Design - Responsibility

How does one determine the assignment of responsibilities to
various objects?

14

There is a great variability in responsibility assignment :
▶ Hence, “good” and “poor” designs, “beautiful” and

“ugly” designs, “efficient” and “inefficient” designs.
▶ Poor choices lead to systems which are fragile and

hard to maintain, understand, reuse, or extend!

|Object-oriented Design - Coupling
Coupling

15

Coupling measures the strength of
dependence between classes and packages.
▶ Class C1 is coupled to class C2 if C1 requires

C2 directly or indirectly.
▶ A class that depends on 2 other classes has a

lower coupling than a class that depends on
8 other classes.

Coupling is an evaluative
principle!

|Object-oriented Design - Coupling
Common Forms of Coupling in Java

• Type X has an attribute that refers to a type Y instance or type Y
itself 
class X{ private Y y = …} 
class X{ private Object o = new Y(); }

• A type X object calls methods of a type Y object 
class Y{f(){;}} 
class X{ X(){new Y.f();}}

• Type X has a method that references an instance of type Y  
(E.g. by means of a parameter, local variable, return type,…) 
class Y{} 
class X{ X(y Y){…}} 
class X{ Y f(){…}} 
class X{ void f(){Object y = new Y();}}

• Type X is a subtype of type Y 
class Y{} 
class X extends Y{}

• ...

16

|Coupling
Coupling in Java - Exemplified

Class QuitAction is
coupled with:
•…ActionListener
•…ActionEvent
•java.lang.Override
•java.lang.System
•java.lang.Object

17

package de.tud.simpletexteditor;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class QuitAction implements ActionListener {

 @Override public void actionPerformed(ActionEvent e)

 { System.exit(0);

 } }

Example Source Code

|Object-oriented Design - Coupling
Coupling

• High Coupling 
A class with high coupling is undesirable, because...
• changes in related classes may force local changes
• harder to understand in isolation
• harder to reuse because its use requires the inclusion of all classes it

is dependent upon

• ...

18

|Object-oriented Design - Coupling
Coupling

• ...
• Low Coupling 

Low coupling supports design of relatively independent, hence
more reusable, classes.
• Generic classes, with high probability for reuse, should have

especially low coupling
• Very little or no coupling at all is also not desirable
• Central metaphor of OO: a system of connected objects that

communicate via messages
• Low coupling taken to excess results in active objects that do all the

work

19

|Object-oriented Design - Coupling
Coupling

• ...
• Low Coupling 

Low coupling supports design of relatively independent, hence
more reusable, classes.
• Generic classes, with high probability for reuse, should have

especially low coupling
• Very little or no coupling at all is also not desirable
• Central metaphor of OO: a system of connected objects that

communicate via messages
• Low coupling taken to excess results in active objects that do all the

work

20

High coupling to stable

elements and to

pervasive elements is

seldom a problem.

|Object-oriented Design - Coupling
Coupling

• ...
• Low Coupling 

Low coupling supports design of relatively independent, hence
more reusable, classes.
• Generic classes, with high probability for reuse, should have

especially low coupling
• Very little or no coupling at all is also not desirable
• Central metaphor of OO: a system of connected objects that

communicate via messages
• Low coupling taken to excess results in active objects that do all the

work

21

Beware: the quest for low coupling to achieve reusability in a future (mythical!) project may lead to needless complexity and increased project cost.

|Object-oriented Design - Cohesion
Cohesion

Cohesion measures the strength of the
relationship amongst elements of a class.
All operations and data within a class
should “naturally belong” to the concept
that the class models.

22

Cohesion is an evaluative

principle!

|Cohesion
Cohesion in Java - Exemplified

Analysis of the cohesion of
SimpleLinkedList
• the constructor uses both

fields

• head uses only the field
value

• tail uses only next

• head and tail are simple
getters; they do not mutate
the state

23

public class SimpleLinkedList {
 private final Object value; private final SimpleLinkedList next;
 public SimpleLinkedList(Object value, SimpleLinkedList next) {
 this.value = value; this.next = next; }

 public Object head() { return value; }

 public SimpleLinkedList tail() { return next; }
}

Example Source Code

|Cohesion
Cohesion in Java - Exemplified

Analysis of the cohesion
of ColorableFigure

• lineColor is used
only by its getter and
setter

• fillColor is used
only by its getter and
setter

• lineColor and
fillColor have no
interdependency

24

import java.awt.Color;
abstract class ColorableFigure implements Figure { private Color lineColor = Color.BLACK; private Color fillColor = Color.BLACK;
 public Color getLineColor() { return lineColor; } public void setLineColor(Color c) { lineColor = c; }

 public Color getFillColor() { return fillColor; } public void setFillColor(Color c) { this.fillColor = c; }

}

Example Source Code

|Object-oriented Design - Cohesion
Types of Cohesion

• Coincidental  
No meaningful relationship amongst elements of a class.

• Logical cohesion (functional cohesion) 
Elements of a class perform one kind of a logical function.  
E.g., interfacing with the POST hardware.

• Temporal cohesion 
All elements of a class are executed “together”.

25

|Object-oriented Design - Cohesion

To keep design complexity manageable, assign responsibilities
while maintaining high cohesion.

26

Responsibility

Cohesion

|Object-oriented Design - Cohesion

Classes with high cohesion can often be described by a simple sentence.

Low Cohesion

• Classes with low cohesion are undesirable, because they are...
• hard to comprehend,
• hard to reuse,
• hard to maintain - easily affected by change
• ...

27

|Object-oriented Design - Cohesion

Classes with high cohesion can often be described by a simple sentence.

Low Cohesion

• Classes with low cohesion...
• often represent a very large-grain abstraction
• have taken responsibility that should have been delegated to other objects

28

|Object-oriented Design

Design needs principles.

29

|Object-Oriented Thinking

A common pitfall in object-oriented design is the
inheritance relation.

• Let’s assume that we want to extend our library for vector graphic
applications and our library already defines classes for Circles
and Squares.

• Let’s assume we want to further evolve our library and add
support for Rectangles…

30

42

|Object-Oriented Thinking

A common pitfall in object-oriented design is the
inheritance relation.

• Now let’s assume we want to further evolve our library and add
support for Rectangles…

• Should Rectangle inherit from Square?
• Should Square inherit from Rectangle?
• Is there some other solution?

31

42

|Object-Oriented Thinking

A common pitfall in object-oriented design is the
inheritance relation.

• Now let’s assume we want to further evolve our library and add
support for Rectangles…

• Should Rectangle inherit from Square?
• Should Square inherit from Rectangle?
• Is there some other solution?

32

42

A first test:  
“Is a Rectangle a Square?”

|Object-Oriented Thinking

A common pitfall in object-oriented design is the
inheritance relation.

• Now let’s assume we want to further evolve our library and add
support for Rectangles…

• Should Rectangle inherit from Square?
• Should Square inherit from Rectangle?
• Is there some other solution?

33

42

A first test:  
“Is a Rectangle a Square?”

No.

|Object-Oriented Thinking

A common pitfall in object-oriented design is the
inheritance relation.

• Now let’s assume we want to further evolve our library and add
support for Rectangles…

• Should Rectangle inherit from Square?
• Should Square inherit from Rectangle?
• Is there some other solution?

34

42A first test:  
“Is a Square a Rectangle”?

Well… yes, but … how about
a Square’s behavior?

|Object-Oriented Thinking

A common pitfall in object-oriented design is the
inheritance relation.

• Now let’s assume we want to further evolve our library and add
support for Rectangles…

• Should Rectangle inherit from Square?
• Should Square inherit from Rectangle?
• Is there some other solution?

35

42A first test:  
“Is a Square a Rectangle”?

Well… yes, but … how about
a Square’s behavior?

|Object-Oriented Design

A large number of Design Heuristics and Design
Principles exists that help you to design “better”
programs.

• Low Coupling
• High Cohesion
• Single Responsibility Principle
• Don’t repeat yourself
• No cyclic dependencies
• Liskov Substitution Principle
• Open-Closed Principle
• ...

36

|

“
Object-oriented Design

The Single Responsibility Principle

Agile Software Development; Robert C. Martin; Prentice Hall, 2003

A class should have only one
reason to change.
I.e. a responsibility is primarily a reason for change.

37

!

|Object-oriented Design
Example: a Rectangle Class

38The Single Responsibility Principle

+draw()
+area() : double

Rectangle

Graphical
Application

Computational
Geometry
Application

GUI

Does the Rectangle class have
a single responsibility or does
it have multiple responsibilities?

|Object-oriented Design
Example: a Rectangle Class
The Single Responsibility Principle

+draw()
+area() : double

Rectangle

Graphical
Application

Computational
Geometry
Application

GUI

• The Rectangle class has multiple responsibilities:
• Calculating the size of a rectangle; a mathematical model
• To render a rectangle on the screen; a GUI related functionality
• Do you see any problems?

39

|Object-oriented Design
Example: a Rectangle Class
The Single Responsibility Principle

+draw()
+area() : double

Rectangle

Graphical
Application

Computational
Geometry
Application

GUI

Problems due to having multiple responsibilities:
• Reuse of the Rectangle class (e.g. in a math package) is hindered due to the

dependency on the GUI package  
(GUI classes have to be deployed along with the Rectangle class)

• A change in the Graphical Application that results in a change of Rectangle requires
that we retest and redeploy the Rectangle class in the context of the Computational
Geometry Application

40

|Object-oriented Design
Example: Rectangle classes with single responsibilities
The Single Responsibility Principle

The solution is to separate the functionality for drawing a rectangle and the
functionality for doing calculations are separated.

41

+draw()

Rectangle

Graphical
Application

Computational
Geometry
Application

GUI
+area() : double

Geometric
Rectangle

Coupling? Cohesion?

|Object-oriented Design
Example: Handling Persistence

The functionality for drawing a rectangle and the functionality for doing
calculations are separated.

42The Single Responsibility Principle

Do we need to change the Employee class?

+CalculatePay()
+Store(...)

Employee

Persistence
Subsystem

|Object-oriented Design
Example: Handling Persistence

The functionality for drawing a rectangle and the functionality for doing
calculations are separated.

43The Single Responsibility Principle

+CalculatePay()
+Store(...)

Employee

Persistence
Subsystem

Two responsibilities:

• Business functionality

• Persistence related functionality

Do we need to change the Employee class?

|Object-oriented Design

Andrew Hunt and David Thomas; The Pragmatic Programmer;  
Addison-Wesley, 2000

Orthogonality

Two or more things are orthogonal if changes in one do not affect any
of the others; e.g. if a change to the database code does not affect your
GUI code, both are said to be orthogonal.

44

if z changes,
x and y remain
unchanged

x

y

z

Design Heuristics
• J. Riel; Object-Oriented Design Heuristics; Addison-

Wesley, 1996

|Design Heuristics
Design Heuristics

• Design Heuristics help to answer the question:  
“Is it good, bad, or somewhere in between?”

• Object-Oriented Design Heuristics offer insights into object-
oriented design improvement

• The following guidelines are language-independent and allow to
rate the integrity of a software design

• Heuristics are not hard and fast rules; they are meant to serve as
warning mechanisms which allows the flexibility of ignoring the
heuristic as necessary

• Many heuristics are small tweakings on a design and are local in
nature  
A single violation rarely causes major ramifications on the entire application.

46

|Design Heuristics

• ...poorly distributed systems intelligence 
The God Class Problem

• ...creation of too many classes for the size of the design problem  
Proliferation of Classes 
(Proliferation =dt. starke Vermehrung)

47

Two areas where the object-oriented paradigm can
drive design in dangerous directions...

|Design Heuristics

If you violate this heuristic your design tends to be more fragile.

A Very Basic Heuristic

All data in a base class should be private; do not use non-private data.  
Define protected accessor methods instead.

48

All data in a base class should be private;  
do not use non-private data.  

Define protected accessor methods instead.

|Design Heuristics
A Very Basic Heuristic

• If you violate this heuristic your design tends to be more fragile
49

public class Line {
 // a "very smart developer" decided:
 // p and v are package visible to enable efficient access
 /*package visible*/ Point p;
 /*package visible*/ Vector v;
 public boolean intersects(Line l) {…}
 public boolean contains(Point p) {…}
}

Line l1 = …;
Line l2 = …;

if (l1.v.equals(l2.v)) {…}

Some code in the same
package that uses Line
objects.

Implementation of a Line
class as part of a math
library.

All data in a base class should be private;  
do not use non-private data.  

Define protected accessor methods instead.

|Design Heuristics
A Very Basic Heuristic

• If you violate this heuristic your design tends to be more fragile
50

public class Line {
 /*package visible*/ Point p1;
 /*package visible*/ Point p2;
 public boolean intersects(Line l) {…}
 public boolean contains(Point p) {…}
}

Line l1 = …;
Line l2 = …;
// check if both lines are parallel
if (l1.v.equals(l2.v)) {…}

The change breaks our
code.

Now, assume the following
change to the
implementation of Line.

The public interface

remains stable - just

implementation details

are changed.

All data in a base class should be private; do not use non-private
data.  

Define protected accessor methods instead.

|Design Heuristics
A Very Basic Heuristic

• If you violate this heuristic your design tends to be more fragile
51

public class Line {
 private Point p;
 private Vector v;
 public boolean intersects(Line l) {…}
 public boolean contains(Point p) {…}
 protected Vector getVector() { return v; };
}

Line l1 = …;
Line l2 = …;
// check if both lines are parallel
if (l1.getVector().equals(l2.getVector())) {…}

“Better design.”

Some code in the same
package that uses Line
objects.

All data in a base class should be private; do not use non-private
data.  

Define protected accessor methods instead.

|The God Class Problem
The God Class Problem

52

Beware of classes that have too much noncommunicating behavior,
that is, methods that operate on a proper subset of the data

members of a class.  
God classes often exhibit much noncommunicating behavior.

Beware of classes that have many accessor methods defined in
their public interface. Having many implies that related data and

behavior are not kept in one place.

Distribute system intelligence as uniformly as possible, that is, the
top-level classes in a design should share the work uniformly.

|The God Class Problem - Behavioral Form
The Problem of Accessor Methods

• The class Point has accessor operations in the public interface.  
Are there any problems with this design of Point, you can think
of?

• Is Point eventually giving too much implementation details away
to clients?  

53

+getX()
+setX(int)
+getY()
+setY(int)

Point

|The God Class Problem - Behavioral Form

The answer to this question is:  
“No, accessor methods do not necessarily expose implementation details.”

The Problem of Accessor Methods

• The class Point has accessor operations in the public interface.  
Are there any problems with this design of Point, you can think of?

• Is Point eventually giving too much implementation details away to clients?  

54

+getX()
+setX(int)
+getY()
+setY(int)

Point

|The God Class Problem - Behavioral Form
The Problem of Accessor Methods

• Accessor methods indicate poor encapsulation of related data
and behavior; someone is getting the x- and y-values of Point
objects to do something with them – executing behavior that is
related to points - that the class Point is not providing

• Often the client that is using accessor methods is a god class
capturing centralized control that requires data from the mindless
Point object 

55

+getX()
+setX(int)
+getY()
+setY(int)

Point

|The God Class Problem - Behavioral Form
The Problem of Accessor Methods

56

public class Line {
 private Point p;
 private Vector v;
 public boolean intersects(Line l) {…}
 public boolean contains(Point p) {…}
 protected Vector getVector() {return v;};
 public boolean isParallel(Line l) {…};
}

Line l1 = …;
Line l2 = …;
// check if both lines are parallel
if (l1.isParallel(l2)) {…}

Reconsider the
Line class.

Some code in the
same package
that uses Line
objects.

|The God Class Problem - Behavioral Form

Two Reasonable Explanations For the Need of Accessor
Methods...

• … a class performing the gets and sets is implementing a policy 
(policy = dt. Verfahren(-sweise))

• … or it is in the interface portion of a system consisting of an
object-oriented model and a user interface 
(The UI layer needs to be able to get the data to visualize it.)

57

|The God Class Problem - Behavioral Form

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

58

Student

Course

Captures static information
about students, e.g., name,
identification number, list of
courses (s)he has taken, etc.

Captures static information
about the course objects, e.g.,
the course number, description,
duration, minimum and
maximum number of students,
list of prerequisites, etc.

|The God Class Problem - Behavioral Form

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

59

Student

Course

Captures static and dynamic
information related to a
particular section of a given
course, e.g., the course being
offered, the room and
schedule, instructor, list of
attendees, etc.

CourseOffering

|The God Class Problem - Behavioral Form

Implementing Policies Between Two or More Classes 
(here: addStudents)
Example from the Course-scheduling Domain

60

s:Student:Course :CourseOffering
1: c = getCourses() →2: checkPrereq(c) ←

addStudent(s) ↓

First design for checking the prerequisites of students

|The God Class Problem - Behavioral Form

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

61

s:Student:Course :CourseOffering
1: c = getCourses() →2: checkPrereq(c) ←

addStudent(s) ↓

s:Student:Course :CourseOffering
2: check(p) →1: p = getPrereq() ←

addStudent(s) ↓

Second design for checking the prerequisites of students

|The God Class Problem - Behavioral Form

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

62

s:Student:Course :CourseOffering
2: check(p) →1: p = getPrereq() ←

addStudent(s) ↓

3: check(p,c) ←

s:Student:Course :CourseOffering
2: c = getCourses() →1: p = getPrereq() ←

addStudent(s) ↓

s:Student:Course :CourseOffering
1: c = getCourses() →2: checkPrereq(c) ←

addStudent(s) ↓

Third design for checking the prerequisites of students

The policy is implemented
by course offering.

|The God Class Problem - Behavioral Form

Implementing Policies Between Two or More Classes.
Example from the Course-scheduling Domain

63

s:Student:Course :CourseOffering
2: check(p) →1: p = getPrereq() ←

addStudent(s) ↓

3: check(p,c) ←

s:Student:Course :CourseOffering
2: c = getCourses() →1: p = getPrereq() ←

addStudent(s) ↓

s:Student:Course :CourseOffering
1: c = getCourses() →2: checkPrereq(c) ←

addStudent(s) ↓

• What do you think of these three designs? 
(Discuss the pros and cons - regarding the implementation of the policy -
with your fellow students.)

|The God Class Problem - Behavioral Form
The God Class Problem - Behavioral Form Summary

• In general, always try to model the real world  
(Low representational gap facilitates maintenance and evolution.)  
But modeling the real world is not as important as the other heuristics.  
(E.g., in the real world a room does not exhibit any behavior, but for a
heating system it is imaginable to assign the responsibility for heating up
or cooling down a room to a corresponding class.)

• Basically, a god class is a class that does too much  
(Behavioral Form)

• By systematically applying the principles that we have studied
previously, the creation of god classes becomes less likely

64

|The Proliferation of Classes
Classes That Model the Roles an Object Plays

Be sure that the abstractions that you model are classes and not
simply the roles objects play.

65

|The Proliferation of Classes
Classes That Model the Roles an Object Plays

• Whether to choose Variant A or B depends on the domain you are
modeling; i.e. whether Mother and Father exhibit different behavior

• Before creating new classes, be sure the behavior is truly different and that
you do not have a situation where each role is using a subset of Person
functionality

66

Variant A Variant B
class Person {…}
class Father extends Person {…}
class Mother extends Person {…}

class Person {…}

main () {
 Father f = new Father(…);
 Mother m = new Mother(…);
}

main () {
 Person father = new Person(…);
 Person mother = new Person(…);
}

|The Proliferation of Classes

Which question do you have to ask yourself to decide if such a design makes
sense?

Classes That Model the Roles an Object Plays

• What do you think of the following design?

67

MaleCustomer

Customer
{abstract}

FemaleCustomer

Summary

|Goal of the Lecture

The goal of this lecture is to enable you to
systematically carry out small(er) software projects
that produce quality software.

69

• Always assign responsibilities to classes such that the coupling is as low as possible ↓,
the cohesion is as high as possible ↑ and the representational gap is as minimal as
possible ↓.

• Coupling and cohesion are evaluative principles to help you judge OO designs.
• Design heuristics are not hard rules, but help you to identify weaknesses in your code

to become aware of potential (future) issues.

|

• The goal of this lecture is to enable you to systematically carry
out small(er) commercial or open-source projects.

Goal of the Lecture 70

Project
Start

Project
End

Requirements Management
Domain Modeling

Software Project Management

Testing
Modeling

Start of an Iteration

Coding

