
Dr. Michael Eichberg
Software Engineering
Department of Computer Science
Technische Universität Darmstadt

Software Engineering

Introduction to
Design Patterns

|Patterns
(Design) Patterns

A pattern describes...
• a problem which occurs over and over again in our environment,
• the core of the solution to that problem, in such a way that you can

use this solution a million times over, without ever doing it the same
way twice.

(Christopher Alexander)

2

|Design Patterns
On Patterns...

• Patterns are proven
• Proven software practice
• Piece of literature
• Building block, with various abstraction levels:

• Idiom (Coplien, 1991)
• Design Pattern (Gamma et al., 1995)
• Architectural Pattern (Buschmann et al., 1996)

3

“Aggressive
disregard for
originality.”

Idioms
… are not (OO-) Design Patterns

|Idioms

An idiom is a low-level pattern  
(typically specific to a programming language).

• String copy in C  
(s and d are char arrays)

5

Exam
ple

while (*d++=*s++);

|Idioms

An idiom is a low-level pattern  
(typically specific to a programming language).

• Lazy instantiation of Singletons in Java  
(Double-checked Locking Idiom) 

6

Exam
ple

Requires Java 6 or

newer to work

correctly!

private static Device device = null;
public static Device instance() {
 if (device == null) {
 synchronized (Device.class) {
 if (device == null) {
 device = new Device();
 } } }
 return device;
}

Template Method
A first Design Pattern

|Design Patterns
The Template Method Pattern

Design Goal
• We want to implement an algorithm such that certain (specific)

parts can be adapted / changed later on.

8

|Design Patterns
The Template Method Pattern

• Define a skeleton of an algorithm in an operation, but defer some
steps to subclasses

• Often found in frameworks and APIs

9

write(int)

FileOutputStream

write(byte[] b)
write(byte[] b, int off, int len)
write(int)

OutputStream
{abstract}

«method»
{

for (byte i : b) {
write(i);

}
}

|

• Use the Template Method Pattern to ….
• separate variant and invariant parts
• avoid code duplication in subclasses; the common behavior is

factored and localized in a common class
• control subclass extensions

Design Patterns
The Template Method Pattern

opA()
opB()

ConcreteClass

templateMethod()
opA()
opB()

AbstractClass
{abstract}

«method»
{

...
opA();
...
opB();

}

10

The template
method is the
method that
defines the

Besides, abstract
operations (must

be overridden) it is
possible to define

|Design Patterns
Design Patterns - Motivation

• Designing reusable, extensible software is hard
• Novices are overwhelmed
• Experts draw from experience
• Some design solutions reoccur

• Understanding reoccurring solutions has several facets:
• Know when to apply
• Know how to establish it in a generic way
• Know the consequence (trade-offs)

11

Architectural Patterns
… are not Design Patterns

|Architectural Patterns

Architectural patterns help to specify the fundamental
structure of a software system, or important parts of it.

• Architectural patterns have an important impact on the
appearance of concrete software architectures

• Define a system’s global properties, such as …
• how distributed components cooperate and exchange data
• boundaries for subsystems

• The selection of an architectural pattern is a fundamental design
decision; it governs “every” development activity that follows

13

|Architectural Patterns

Architectural patterns help to specify the fundamental
structure of a software system, or important parts of it.

Architectural Patterns
• Pipes and Filters
• Broker Pattern
• MVC
• Broker
• …

14

Often, it is not sufficient to choose
just one architectural pattern;

instead it is necessary to combine
several architectural patterns.

|Architectural Patterns
Example: Model-View Controller (MVC)

The MVC pattern describes a fundamental structural organization
for interactive software systems
• The model contains the core functionality and data 

The model is independent of output representations or input
behavior.

• The user interface is comprised of:
• Views that display information to the user  

The view obtains the data from the model.
• Controllers that handle user input 

Each view has a controller. A controller receives input. The events
are then translated to service requests for the model or the view. All
interaction goes through a controller.

15

|Architectural Patterns

Example: Model-View Controller (MVC)
Change Propagation

• A change propagation mechanism ensures consistency between
the user interface and the model. 
(The change-propagation mechanism is usually implemented using the
Observer pattern / the Publisher-Subscriber pattern.) 
Basic Idea:  
A view registers itself with the model.  
If the behavior of a controller depends on the state of the model, the
controller registers itself with the change propagation mechanism.

16

Model

1: change propagation change

View

|Architectural Patterns

Example: Model-View Controller (MVC)
Change Propagation

Use the MVC pattern for building interactive applications with a
flexible human-computer interface. When...
• the same information should be presented differently (in different windows...)
• the display and behavior of the application must reflect data manipulations

immediately
• porting the UI (or changing the L&F) should not affect code in the core of the

application

17

Data

View 1 View 2

|Architectural Patterns

Example: Model-View Controller (MVC)
Structure

While the Controller and the View are directly coupled with the
Model, the Model is not directly coupled with the Controller or the
View.

18

Model

Controller

View

|Architectural Patterns

Example: Model-View Controller (MVC)
Liabilities

• Increased complexity 
Using separate view and controller components can increase complexity
without gaining much flexibility

• Potential for excessive number of updates 
Not all views are always interested in all changes.

• Intimate connection between view and controller

19

(Liabilities =dt. Verantwortlichkeiten / Verbindlichkeiten)

|Architectural Patterns

Architectural Patterns
Recommended Resources

• Pattern-Oriented Software Architecture - A System of Patterns;
Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, Michael Stal; Wiley 1996

• Design Patterns; Gamma et al.
• Patterns of Enterprise Application Architecture; Martin Fowler;

Addison Wesley 2003

20

Properties of
(Design) Patterns

|Design Patterns
Design Patterns - Benefits

• Systematic (software-)development:
• Documenting expert knowledge
• Use of generic solutions
• Raising the abstraction level

22

|Design Patterns
Design Patterns - Essentials

• a pattern has a name
• the problem has to reoccur to make the solution relevant in

situations outside the immediate one
• it has to be possible to tailor the solution to a variant of the

problem

23

A Design Pattern
describes a solution for a

problem in a context.

(to tailor =dt. anpassen)

|Design Patterns
Essential Parts of Patterns

1. Pattern Name 
A short mnemonic to increase your design vocabulary.

2. Problem  
Description when to apply the pattern (conditions that have to
be met before it makes sense to apply the pattern).

3. Solution  
The elements that make up the design, their relationships,
responsibilities and collaborations.

4. Consequences  
Costs and benefits of applying the pattern. Language and
implementation issues as well as impact on system flexibility,
extensibility, or portability. 
The goal is to help understand and evaluate a pattern.

24

|Design Patterns

Template for Design Patterns
(For Design Patterns as described by Gamma et al., 1995)

25

1.
▶ Name

▶ Intent

2.
▶ Motivation

▶ Applicability

3.

▶ Structure

▶ Participants

▶ Collaboration

▶ Implementation

4. ▶ Consequences

5. ▶ Known Uses

▶ Related Patterns

|Design Patterns

To document a used design pattern use the participant
names of the pattern to specify a class’ role in the
implementation of patterns.

26

write(int)

FileOutputStream

write(byte[] b)
write(byte[] b, int off, int len)
write(int)

OutputStream
{abstract}

Template
Method

abstract
class

concrete
classopA()

opB()

ConcreteClass

templateMethod()
opA()
opB()

AbstractClass
{abstract}

«method»
{

...
opA();
...
opB();

}

Template Method Pattern Use of the Template Method
Pattern in Java

|Design Patterns
Levels of Consciousness for a Design Pattern

1. Innocence
2. Known tricks
3. Competent trick application
4. Applicability & consequences known
5. Wide knowledge of patterns & their interaction
6. Capable of capturing knowledge into literate form

27

|Design Patterns
Design Patterns Serve Multiple Purposes

28

Elements of Reusable
Software

patterns foster reusability

Reuse of Design rather than code

Communication design vocabulary

Documentation information chunks

Language Design high level languages

Teaching passing on culture

|Design Patterns

Patterns enable the construction of high-quality software architectures.

29

|Design Patterns

A software design pattern describes...

a commonly recurring structure of interacting software components

that solve a general software design problem

within a particular context.

30

|Design Patterns
Design Patterns - Occurrences

31

chess from rules to expertise

literature oldest reference

agriculture wisdom vs. science

architecture pioneering work

software design

8© T. Kühne

Architectural Patterns

Place at

Window

Light from two sides

Deep terrace

Patterns in Architecture

|Design Patterns 32

(Design Patterns =dt. Entwurfsmuster)

Main Focus

(Content relevant

for the exam!) Alternative
Book

Summary

|Goal of the Lecture

The goal of this lecture is to enable you to systematically carry out small(er)
software projects that produce quality software.

34

•Idioms, Design Patterns and Architectural Patterns help you to solve
recurring problems (at different abstraction levels) and to immediately
understand the benefits and tradeoffs.
•Patterns enable you to talk about the design of your application at a
higher abstraction level.

