Dr. Michael Eichberg
Software Engineering

Department of Computer Science

Technische Universitat Darmstadt

Software Engineering

The Strategy

Design Pattern

For details see Gamma et al. in “Design Patterns”

&5 TECHNISCHE
(cc“/’@ UNIVERSITAT
75

Yoy DARMSTADT

<<=

Task | 2

Supporting several kinds of external third-party services for calculating taxes.

Supporting several kinds of database connectors.

We want to be able to sort different kinds of values.

The Strategy Design Pattern

Intent & Example
The GoF Design Patterns | 3

r =

Define a Familg of algorithms, encapsulate each one, and

make them interchangeable. Strategy lets the aleorithm

—

42 BubbleSorter - <interface»
o SortHandle
O ‘ QuickSorter |

I

‘ ‘ IntSortHandle b ‘ DoubleSortHandle b ‘

Strategies

The Strategy Design Pattern
Excerpt of the Structure

The GoF Design Patterns | 4

. «Interface»
;Chent >| Handle .

| Strategy |

The Strategy Design Pattern
General Structure

The GoF Design Patterns | 5

«interface»
% > Strategy

algorithmlinterface()

AN

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC
algorithminterface() algorithminterface() algorithminterface()

ncapsulate each

Define a family of algorithms, €
m interchangeable.

one, and make the

_ e
—

The Strategy Design Pattern

Strategy - An Alternative to Subclassing
The GoF Design Patterns | 6

® Subclassing Context mixes algorithm’s

implementation with that of Context

L | If you would use
Context harder to understand, maintain, extend. |

I subclassing

* When using subclassing we can't vary the | instead of the

algorithm dynamically | Strategy Design

: : I Pattern.
® Subclassing results in many related classes ‘

They just differ in the algorithm or behavior they employ.

® Encapsulating the algorithm in Strateqgy...
P g g gy
® lets you vary the algorithm independently of its context

® makes it easier to switch, understand, reuse and extend
the algorithm

Example - “The Strategy Pattern” in Java AWT/Swing

The Strategy Design Pattern 7

f > — S . =
) Client Code v
' java.awt.Container c = ...;

f c.setlayout(new java.awt.BorderlLayout())

- — - fv
e
S
N

public class Container extends Compo

LayoutManager

) «interface»
Container =

layoutContainer(Container c) : void

}**

1

* Sets the layout manager for this contai@er.
X mgr the specified layout manager/ BorderLayout
%/ \ S
public void setlLayout(LayoutManager&=") {
layoutMgr = ;
invalidateIfValid();
I3
/ &k
* Causes this container to lay out its components.
*/

public void dolLayout() {
LayoutManager layoutMgr = this.layoutMgr;
if (layoutMgr '= null) {
layoutMgr.layoutContainer(this);
I3

The Strategy Design Pattern

When to use Strategy
The GoF Design Patterns | 8

* ...many related classes differ only in their behavior rather than

implementing different related abstractions
Strategies allow to configure a class with one of many behaviors.

® ...you need different variants of an algorithm

Strategies can be used when variants of algorithms are
implemented as a class hierarchy.

® ...aclass defines many behaviors that appear as multiple

conditional statements in its operations
Move related conditional branches into a strategy.

The Strategy Design Pattern
Things to Consider

The GoF Design Patterns | 9

* Clients must be aware of different strategies and how they difter,
in order to select the appropriate one

* Clients might be exposed to implementation issues

® Use Strategy only when the behavior variation is relevant to
clients

The Strategy Design Pattern

Things to Consider
The GoF Design Patterns | 10

* Optional Strategy objects

® Context checks if it has a Strategy before accessing it...
® If yes, Context uses it normally
® |t no, Context carries out default behavior

® Benetfit: clients don't have to deal with Strategy objects unless they
don't like the default behavior

The Strategy Design Pattern

Things to Consider
The GoF Design Patterns | 11

® Increased number of (strategy) objects

®* Sometimes can be reduced by stateless strategies that Contexts
can share

* Any state is maintained by Context, passes it in for each request
to the Strategy object

(No / less coupling between Strategy implementations and
Context.)

® Shared strategies should not maintain state across invocations
(—Services)

The Strategy Design Pattern - Implementation
The GoF Design Patterns | 12

e The Strategy interface is shared by all Concrete Strategy classes
whether the algorithms they implement are trivial or complex

e Some ConcreteStrategies won't use all the information
passed to them
(Simple ConcreteStrategies may use none of it.)
(Context creates/initializes parameters that never get used.)
It this is an issue use a tighter coupling between Strategy and
Context; let Strategy know about Context.

Communication Overhead

B = — -
=

The Strategy Design Pattern - Implementation
The GoF Design Patterns | 13

e Giving Strategy Visibility for the Context Information the Strategy
needs; two possible strategies:

* Pass the needed information as a parameter...
e Context and Strategy decoupled
e Communication overhead
e Algorithm can't be adapted to specific needs of context

e Context passes itself as a parameter or Strategy has a reference
to its Context...

e Reduced communication overhead
e Context must define a more elaborate interface to its data

e Closer coupling of Strategy and Context

Comparison of the
Strategy and the Template Design Patterns

The GoF Design Patterns | 14

- «interf »
E—-T NI

«interface»
%Context > Strategy | Strategy |

algorithminterface()

VAN

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC
algorithminterface() algorithminterface() algorithminterface()

the detailed im

abstractions (interfaces).

—

