Dr. Michael Eichberg
Software Engineering

Department of Computer Science

Technische Universitat Darmstadt

Software Engineering

The Observer
Design Pattern

For details see Gamma et al. in “Design Patterns”

TECHNISCHE
UNIVERSITAT
DARMSTADT

Observer Design Pattern

/i TECHNISCHE
UNIVERSITAT
DARMSTADT

Intent

Define a one-to-many dependency between
objects so that when an object changes it's state,
all its dependents are notified and updated

automatically.

The Observer Design Pattern

Alternative Implementation using AspectJ
Rethinking The GoF Design Patterns | 3

Design pattern implementation in Java and aspect)
3 Patterns Aspect) - Goo... |Q pattern implementation... | £} http://www.cs.ubc.ca/~... |} iCalamus.net = iCalamu... |£) D120.de/forum e Them...

Subscribe (Full Service) Register (Limited Service, Free) Login [‘
»

A
@ P 6" Iz TA L Search: () The ACM Digital Library (*) The Guide

THE GUIDE TO COMPUTING LITERATURE 15 Eeedback Report a problem Satisfaction survey

Design pattern implementation in Java and aspectJ
Full text T7)Pdf (367 KB)

Source Conference on Object Oriented Programming Systems Languages and Applications archive

Proceedings of the 17th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications table
of contents

Seattle, Washington, USA

SESSION: Aspects table of contents

Pages: 161 - 173

Year of Publication: 2002

ISSN:0362-1340

Also published in ...

Authors Jan Hannemann University of British Columbia, Vancouver B.C. VBT 1Z4
Gregor Kiczales University of British Columbia, Vancouver B.C. VBT 124

Sponsors ACM: Association for Computing Machinery
SIGPLAN: ACM Special Interest Group on Programming Languages

Publisher ACM New York, NY, USA

Additional Information: abstract references cited by index terms collaborative colleagues peer to peer

-

Tools and Actions: Find similar Articles ~ Review this Article y
e

The Observer Design Pattern
Alternative Implementation using AspectJ

Rethinking The GoF Design Patterns | /|

®* \We want to...

¢ avoid the decision between Push or Pull mode observers

® better support observers interested only in specific events

OO0 Design pattern implementation in Java and aspect)

3 Patterns Aspect] - Goo... | pattern implementation... |€3 http://www.cs.ubc.ca/~... |® iCalamus.net = iCalamu... |0 D120.de/forum e Them...

A Subscribe (Full Service) Register (Limited Service, Free) Login O
» @ P ﬁ‘ R TA L Search: (O The ACM Digital Library (%) The Guide
i.) l'iﬁ‘i

HeBIS

THE GUIDE TO COMPUTING LITERATURE T° Feedback Report a problem Satisfaction survey

Design pattern implementation in Java and aspectJ

Full text F)Pdf (367 KB)

Source Conference on Object Oriented Programming Systems Languages and Applications archive
Proceedings of the 17th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications table
of contents
Seattle, Washington, USA
SESSION: Aspects table of contents
Pages: 161 - 173
Year of Publication: 2002
ISSN:0362-1340
Also published in ...
Authors Jan Hannemann University of British Columbia, Vancouver B.C. VBT 124

Gregor Kiczales University of British Columbia, Vancouver B.C. VBT 124

Sponsors ACM: Association for Computing Machinery
SIGPLAN: ACM Special Interest Group on Programming Languages

Publisher ACM_ New York, NY, USA

>

Additional Information: abstract references cited by index terms collaborative colleagues peer to peer

Tools and Actions: Find similar Articles ~ Review this Article

The Observer Design Pattern
Alternative Implementation using AspectJ

Rethinking The GoF Design Patterns | 5

Parts Common to Potential Instantiations of the Pattern Will be
1. The existence of Subject and Observer roles implemented in a
(i.e. the fact that some classes act as Observers and some as Subjects) reusable

ObserverProtocol
aspect.

Maintenance of a mapping from Subjects to Observers

The general update logic: Subject changes trigger Observer
updates

Parts Specific to Each Instantiation of the Pattern

4. Which classes can be Subjects and which can be Observers

5. A set of changes of interest on the Subjects that trigger updates on
the Observers

6. The specific means of updating each kind of Observer when the
update logic requires it

The Observer Design Pattern

Alternative Implementation using AspectJ
Rethinking The GoF Design Patterns | 6

public abstract aspect ObserverProtocol {m

The part
common to

// Realization of the Roles of the Observer Design Pattern
protected interface Subject { } , o
protected interface Observer { } Instantiations

of the pattern.

J

_|

ne Observer Design Pattern
ternative Implementation using AspectJ

>

Rethinking The GoF Design Patterns | 7

public abstract aspect ObserverProtocol { —_—

// Mapping and Managing Subjects and Observers
private WeakHashMap<Subject, List<Observer>> perSubjectObservers; 'The|oart
protected List<Observer> getObservers(Subject s) { common to
1f (perSubjectObservers == null)
perSubjectObservers = new WeakHashMap<Subject, List<Observer>>()
List<Observer> observers = perSubjectObservers.get(s); of the pattern.
1f (observers == null) {
observers = new LinkedlList<Observer>(); Y,
perSubjectObservers.put(s, observers);

Instantiations

}

return observers;

ks

public void addObserver(Subject s,Observer o0){
getObservers(s).add(o);

by

public void removeObserver(Subject s,Observer o0){
getObservers(s).remove(o);

}

The Observer Design Pattern

Alternative Implementation using AspectJ
Rethinking The GoF Design Patterns | 8

public abstract aspect ObserverProtocol { — LN

// Notification related functionality

The part

abstract protected pointcut subjectChange(Subject s);
common to

abstract protected void updateObserver(Subject s, Observer o); Instantiations

of the pattern.

after(Subject s): subjectChange(s) {
Iterator<Observer> iter = getObservers(s).iterator(); J
while (iter.hasNext()) {
updateObserver(s, iter.next());

> —

ne Observer Design Pattern

ternative Implementation using AspectJ - Example

FigureElement

VAN

Point

Rethinking The GoF Design Patterns | 9

Line

setX()
setY()
setColor()

<< setP1()
setP2()

setColor()

The Observer Design Pattern

Alternative Implementation using Aspectd - Example
Rethinking The GoF Design Patterns | 10

Task: Observe Changes of the Color

public aspect ColorObserver extends ObserverProtocol {

declare parents: Point 1implements Subject;
declare parents: Line 1implements Subject;
declare parents: Screen implements Observer;

protected pointcut subjectChange(Subject s):
(call(void Point.setColor(Color)) I
call(void Line.setColor(Color))) && target(s);

protected void updateObserver(Subject s, Observer o) {
((Screen)o).display("Color change.");

¥
¥

To create a mapping between an Observer and a Subject:
ColorObserver.aspectOf().addObserver(P, S);

The Observer Design Pattern

Alternative Implementation using AspectJ - Assessment

Rethinking The GoF Design Patterns | 11

®* Locality

All code that implements the Observer pattern is in the abstract
and concrete observer aspects, none of it is in the participant
classes; there is no coupling between the participants.

Potential changes to each Observer pattern instance are confined
to one place.

® Reusability

The core pattern code is abstracted and reusable. The
implementation of ObserverProtocol is generalizing the overall

pattern behavior. The abstract aspect can be reused and shared
across multiple Observer pattern instances.

The Observer Design Pattern

Alternative Implementation using AspectJ - Assessment
Rethinking The GoF Design Patterns | 12

®* Composition transparency

Because a pattern participant’s implementation is not coupled to
the pattern, if a Subject or Observer takes part in multiple
observing relationships their code does not become more
complicated and the pattern instances are not confused.

Each instance of the pattern can be reasoned about
independently.

* (Un)pluggability

It is possible to switch between using a pattern and not using it in
the system.

Observer Design Pattern

Summary | 13

How it is implemented depends on the available programming
language mechanisms; the consequences may also change!

Programming Languages < Design Pattern

