
Dr. Michael Eichberg
Software Technology Group

Department of Computer Science

Technische Universität Darmstadt

Software Engineering

Organization

The Lecture’s Goal

|Content / Structure of the Lecture �3

The goal is to enable you to systematically carry
out small(er) commercial or open-source

software projects.

|Content / Structure of the Lecture
Basic Goals

• To get a brief overview of “all” areas of software engineering
• To understand agile software development processes
• To get first hands-on experience and to learn to use basic software

development tools
• To be able to perform object-oriented analysis and design
• To be able to read and create basic UML diagrams
• To be able to use basic design patterns
• To perform basic software quality assurance

�4

|Teaser
Basic programming skills are required.

• Basic knowledge of object-oriented programming concepts is necessary 
I.e., you should readily understand the following terms:
• (inner) class, interface
• object
• inheritance
• polymorphism
• virtual method

• Working knowledge of the Java programming language (Java 8)
• We may use further languages to discuss more advanced ideas

�5

The Lecture’s Structure

|Content / Structure of the Lecture �7

Software
Engineering

What is
Software(?)

Engineering(?)

Software
Project

Management
Testing

Software
Engineering

Tools

Object-
Oriented

Analysis and
Design

UML Modeling

Historical
Background

Properties of
Software
Projects

Requirements
Engineering

Software
Engineering

Processes

Risk
Management

Agile MethodsWaterfall
Model

Dynamic
Behavior

Static Structure

Class Diagrams Sequence
Diagrams

Communication
Diagrams

Object
Diagrams

Domain
Modeling

IDEsRevision
Control Sytems

Unit Testing

“Code
Coverage”

GIT

IdiomsDesign
Patterns

General
Design Goals

Low CouplingHigh CohesionSingleton Template
Method

…

requiresrequires

|Content / Structure of the Lecture �8

Software
Engineering

What is
Software(?)

Engineering(?)

Software
Project

Management
Testing

Software
Engineering

Tools

Object-
Oriented

Analysis and
Design

UML Modeling

Historical
Background

Properties of
Software
Projects

Requirements
Engineering

Software
Engineering

Processes

Risk
Management

Agile MethodsWaterfall
Model

Dynamic
Behavior

Static Structure

Class Diagrams Sequence
Diagrams

Communication
Diagrams

Object
Diagrams

Domain
Modeling

IDEsRevision
Control Sytems

Unit Testing

“Code
Coverage”

GIT

IdiomsDesign
Patterns

General
Design Goals

Low CouplingHigh CohesionSingleton Template
Method

…

requiresrequires

|Content / Structure of the Lecture �9

Software
Engineering

What is
Software(?)

Engineering(?)

Software
Project

Management
Testing

Software
Engineering

Tools

Object-
Oriented

Analysis and
Design

UML Modeling

Historical
Background

Properties of
Software
Projects

Requirements
Engineering

Software
Engineering

Processes

Risk
Management

Agile MethodsWaterfall
Model

Dynamic
Behavior

Static Structure

Class Diagrams Sequence
Diagrams

Communication
Diagrams

Object
Diagrams

Domain
Modeling

IDEsRevision
Control Sytems

Unit Testing

“Code
Coverage”

GIT

IdiomsDesign
Patterns

General
Design Goals

Low CouplingHigh CohesionSingleton Template
Method

…

requiresrequires

Organization

|Organization
The Team

Contact
Forum (D120 - Software Engineering) 
https://www.fachschaft.informatik.tu-darmstadt.de/forum/viewforum.php?f=198

�11

Dr. Michael Eichberg Dominik Helm

https://www.fachschaft.informatik.tu-darmstadt.de/forum/viewforum.php?f=198

|Organization
Lecture

• Fridays 13:30-15:00 in S1 01 | A01 and S1 01 | A03
• The slides are in English 

(Key terms will be translated into German.)
• The slides will generally be available after the lecture  

(I will try hard to make a preliminary version available the day before the lecture.)
• The slides can be found at 

http://stg-tud.github.io/eise/

�12

http://stg-tud.github.io/eise/

|Organization
Exercises

�13

• Fridays 15:15-16:00 in S1 01 | A01 and S1 01 | A03
• Every week, we will have an exercise, starting next week.
• Exercises are expected to be solved in teams of 3 students.
• The content of the exercise is relevant for the exam.
• The exercises are the best way to prepare for the exam; do them on your

own!
• Sign-up as a team until Oct. 28th; if you don’t have a team, we will assign

you to a team.
• Go to our submission site to sign up for the exercises.  

http://submission.st.informatik.tu-darmstadt.de 
You have to be in the internal network of the TU Darmstadt.

http://submission.st.informatik.tu-darmstadt.de

|Organization
Exercises - Bonus

• You can get a bonus by successfully completing the exercise.
• Exercise points will be converted to exam points as follows:

•

• I.e., the maximum bonus is equivalent to getting the exam
points necessary to get a full grade better (e.g., 2,0 => 1,0).

• The bonus cannot be used to pass the exam.

�14

r =
gained exercise points
all exercise points

gained exam points = r × exam points required to get a full grade better

|Organization
Written Exam

• The exam will be a closed-book exam.
• The date of the exam is: March, 27th 2019, 12:00  

(The rooms will be announced in the forum/moodle. The exam will take 90min.)
• You need to register for the exam in TUCaN. 

(There are no further prerequisites; “everyone” can attend the exam.)
• (Only) the very best students are expected to be able to solve the entire

exam.

�15

|Organization
Related Bibliography

�16

|Organization
Essential Bibliography

• Design Patterns - Elements of Reusable Object-Oriented Software;
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides; Addison-
Wesley, 1995

• Applying UML and Patterns - An Introduction to Object-oriented
Analysis and Design; Craig Larman; Prentice Hall

�17

|Organization
A Recommended / Very Useful Podcast

�18

|Related Lectures �19

GDI I

GDI II

Software
Engineering

Software Engineering Design
and Construction

Konzepte der
Programmiersprachen

…

